SET

M.Sc. CHEMISTRY FIRST SEMESTER **OUANTUM CHEMISTRY-I**

MSC - 104 IDMn

[USE OMR SHEET FOR OBJECTIVE PART]

Full Marks: 35

Duration: 1.30 hrs.

Objective

Marks: 10

Time: 15 min.

Choose the correct answer from the following:

1X10=10

1. The acceptable wavefunction is

2. The phase velocity of a particle moving with a velocity v is

$$a.\frac{c}{r}$$

$$c. \frac{1}{c}$$

$$d.\frac{1}{c}$$

3. The de-broglie wavelength of a paticle of mass 'm' and kinetic energy E_k is

a.
$$\frac{h}{2mE_K}$$

b.
$$\frac{h}{2m}$$

$$\int \frac{h}{\sqrt{2mE_b}}$$

d.
$$\frac{h}{\sqrt{mE_i}}$$

4. Which of the following is an eigenvalue equation of operator λ and eigenvalue λ?

a.
$$\lambda \Psi = \lambda \Phi$$

b.
$$\lambda \Psi = \frac{1}{2} \Phi$$

$$\mathbf{c.}\ \hat{\lambda}\Psi = \frac{1}{\hat{\lambda}}\Psi$$

$$\mathbf{d} \cdot \lambda \Psi = \lambda \Psi$$

5. Which of the following is correct?

$$\widehat{x}\widehat{p_x} - \widehat{p_x}\widehat{x} = \frac{\hbar}{i}$$

$$\widehat{x}\widehat{p_x} - \widehat{p_x}\widehat{x} = -\frac{\hbar}{i}$$

b.
$$\widehat{x}\widehat{p_x} - \widehat{p_x}\widehat{x} = \frac{h}{i}$$

c.
$$\widehat{x}\widehat{p_x} - \widehat{p_x}\widehat{x} = -\frac{\hbar}{i}$$

$$\mathrm{d.}\,\widehat{x}\,\widehat{p_x} - \widehat{p_x}\widehat{x} = -\frac{h}{i}$$

6. The normalization constant for a particle in 1D box in between length 0 to 1 with wavefunction $\Psi = \sin\left(\frac{m\pi x}{i}\right)$ is

b.
$$\sqrt{\frac{2l}{x}}$$

c.
$$\sqrt{\frac{2i}{x}}$$

d.
$$\sqrt{\frac{1}{4}}$$

7. The Hamiltonian for a rigid rotor is giv111 by

a. 1 b.
$$4\xi^2 - 2$$
 d. 0

9. If $\phi = Ae^{im\phi}$, then value of A after normalization is

i.
$$\frac{1}{\sqrt{\pi}}$$
ii. $\frac{1}{\sqrt{2\pi}}$
iii. $\frac{1}{\sqrt{3\pi}}$
iii. $\frac{1}{\sqrt{2\pi}}$
iii. $\frac{1}{\sqrt{2\pi}}$

10. The degeneracy of the n=2 level for a three-dimensional isotropic oscillator is___.

(<u>Descriptive</u>)

ime: 1 hrs. 15 mins.

Marks: 25

[Answer question no.1 & any two (2) from the rest]

a. Calculate the average value of the position (x) for a particle in a box of length 'a'.

b. What is quantum tunnelling effect?

- .. a. State the postulates of quantum mechanics.

 5+5=10
 - b. Define Hermitian operator and prove that the eigenvalue of Hermitian operator is real.
- 3. a. Starting from the definition of \overline{L}_+ and \overline{L}_- find the value of $[\overline{L}_+, \overline{L}_-]$ 5+5=10
 - **b**Prove that eigenfunctions of a Hermitian operator corresponding to different eigenvalues are orthogonal.
- 4. a. What is degeneracy? Give the degeneracy of a 3D box with energy $E = \frac{27 \text{ h}^2 \pi^2}{2 \text{ m/s}^2}$

b. Derive and solve the Schrodinger wave equation for rigid rotor

- 5. a. Derive and solve the Schrodinger wave equation for a particle in a ring. 6+4=10
 - b.The lowest energy of a quantum mechanical one-dimensional simple harmonic oscillator is 300 cm⁻¹. What is the energy (in cm⁻¹) of the next higher level?

== *** = =