SET

M.Sc. PHYSICS **FOURTH SEMESTER** GENERAL THEORY OF RELATIVITY & ASTROPHYSICS

MSP-402

[USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

Objective

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

1X20 = 20

1. The interval between two events is called time-like if

a.
$$ds^2 > 0$$

$$b. ds^2 < 0$$

c.
$$ds^2 \ge 0$$

$$d. ds^2 \le 0$$

2. In a space-time diagram, the angle made by light-like curves with time axis will be

a. Equal to
$$\frac{\pi}{4}$$

b. Less than
$$\frac{\pi}{1}$$

c. Greater than
$$\frac{\pi}{4}$$

3. The covariant derivative of a second rank tensor becomes a tensor of rank

4. In four-dimensional manifold, the value of the expression $\delta_{\sigma}^{\mu}\delta_{\nu}^{\sigma}$ is

The conjugate tensor of $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$ is

a.
$$\frac{1}{r^2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$$

$$\frac{1}{r^2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$$

$$\mathcal{S}_{\frac{1}{r^2}} \begin{pmatrix} 0 & 0 & r^2 \\ r^2 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b.
$$\frac{1}{r^2}\begin{pmatrix} r^2 & 0 & 0 \\ 0 & -r^2 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$$

d.
$$\frac{1}{r^2}\begin{pmatrix} 0 & 0 & r^2 \\ r^2 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & -r^2 \end{pmatrix}$$

6. The metric component $g_{\varphi\varphi}$ in the line-element $ds^2=dr^2+r^2(d\theta^2+\sin^2\theta\;d\varphi^2)$ will be?

a.
$$r^2$$
 si

a.
$$r^2 \sin^2 \theta$$

b.
$$r^{2}$$

c.
$$\sin^2 \theta$$

7. The number of dependent components in the Einstein tensor $G^{\alpha\beta}$ is

8. The number of independent components in the Riemann curvature tensor $R_{\alpha\beta\gamma\delta}$ is

[1]

\$2.00 m		
b. The space-time is asymptotically flat	The assumptions made in the Schwarzschild a. The space-time is vacuum c. The space-time is spherically symmetric	
then the time in IST is b. 12:10 PM d. 7:10 AM		
horizon for an observer who is at the b. south pole d. equator	The South Celestial Pole will be on the horiz a. north pole c. USTM	
be towards from the Celestial Equator b. south d. west	A star seen at the zenith at USTM must be to a. north c. east	
alaxy is b. 28000 LY لق 100000 LY		
most active in star formation? b. Spiral d. Lenticular		
th P-P as well as C-N-O cycle possess is found b. $1.5 \times 10^6 K$	to be	
d. 1.99 × 10 ⁸ K r Sun, it would power it up only to b. 50 K Yrs d. 10 B Yrs	ا If only the gravitational energy runs our Sur 13.8 B Yrs	
a photon emitted at a distance r=R _{Sch} lack hole. b. infinite d. none of these	perpendicularly from the surface of a black I a. minimum	
	Fill in the blank: $p + e \rightarrow _{} + v$ (symbols hav a. e^*	
onverting to a white dwarf leads to b. $\rho = 10^{14} \text{ gm/cc}$ d. $\rho = 10^{101} \text{ gm/cc}$		
in space where all the mass of a black hole	accumulates.	
b. Event Horizond. Singularity		
	<u></u>	

121

USTM/COF/R-01

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1,	Explain the three main regions of FI-R diagram. The Luminosity of star Sirius is $25.4L_{\odot}$, and its surface temperature $T = 10000K$, find its radius using Stefan's Law. Given $L_{\odot} = 3.85 \times 10^{26}W$.	5+5=10
2.	a.Derive an expression the Riemann curvature tensor in terms of Christoffel symbols of second kind.	6+2+2 =10
	b. Find the divergence of a scalar function.	
	c. Show that covariant derivative of the metric tensor vanish	
3.	 a. Draw the Minkowski space-time diagram showing time-like and light-like curves. 	4+3+3 =10
	b. Define time-like and light-like interval.	2.00/
	c. Using tensor transformation rule, convert the metric $ds^2 = dx^2 + dy^2$ into the cylindrical coordinates.	80
4.	Discuss how a white dwarf form, Explain briefly on electron degeneracy pressure.	5+5=10
5.	a.lf A^{μ} is a tensor, then show that $\partial_{\nu}A^{\mu} + \Gamma^{\mu}_{\sigma\nu}A^{\sigma}$ is also a tensor.	4+4+2
	 Express the field equations in terms of Ricci tensor and stress- energy tensor. 	=10
	c.State the cyclic property of the Riemann curvature tensor.	
6.	What do you understand by Hydrostatic Equilibrium of a star? Establish the relation of Hydrostatic Equilibrium between the pull of gravity and outward gas pressure.	2+4+4 =10
	If a star of same size and mass of the Earth converts to a black hole,	~//
	what would be its Schwarzschild radius?	=10
	[3]	

7. a.Find the Christoffel symbols $\Gamma^{r}_{\mu\nu}$ and $\Gamma^{\theta}_{\mu\nu}$ using the line-element $ds^2 = dr^2 + r^2(d\theta^2 + \sin^2\theta \ d\phi^2)$.

4+4+2 =10

- Derive an expression of the effective potential of Schwarzschild vacuum solution.
 - c. What do you mean by an event horizon?

Discuss the steps involve in the following fusion reactions that runs the energy production process in stars.

5+5=10

P-P cycle C-N-O cycle

== *** ==