REV-01 MSP/02/05

M.Sc. PHYSICS **FOURTH SEMESTER** LASER & NONLINEAR OPTICS MSP-403 D [USE OMR FOR OBJECTIVE PART]

SE'

2023/06

Duration: 3 hrs.

Objective

Time: 30 min.

Marks: 20

Full Marks: 70

Choose the correct answer from the following:

1X20 = 20

1. For a pure state with density operator ρ' , which of the following condition is true? b. $Tr(\rho^2)=1$

a. $Tr(\rho)=1$

c both (a) and (b) are true

d. none of the above

2. The completeness equation related to a two-state system having states $|a\rangle$ and $|b\rangle$ is

a. $|a\rangle\langle a| + |b\rangle\langle b| = 0$

b. $|a\rangle\langle b| + |b\rangle\langle a| = 1$

 $|c|a\rangle\langle a| + |b\rangle\langle b| = 1$

d. $\langle a|a\rangle + \langle b|b\rangle = 1$

The Rabi-oscillation associated with a two-level system and an external field E is given by

a. $\Omega_R = \frac{\hbar}{-} |\mu_{ab}| E$

 $\Omega_R = \frac{|\mu_{ab}|E}{\hbar}$

 $\begin{array}{l} \mathbf{b.} \; \Omega_R = \frac{\hbar |\mu_{ab}|}{E} \\ \mathbf{d.} \; \Omega_R = \frac{\hbar E}{|\mu_{ab}|} \end{array}$

4. The dipole matrix approximation for a light-matter interaction suggests the following relation to be true

a.

K.r = 0

K.r = 1

c.

 $K,r \ll 1$

 $K.r \gg 1$

Which among the following conditions indicates slow light?

ιa,

 $V_a > c$

 $V_{q} < c$

C.

 $V_{\alpha} = c$

d.

 $V_a \times c = 0$

6. In Z scan technique the sign of the nonlinear phase shift $\Delta \phi > 0$ indicates

a. Self-focusing

b. Self-defocusing

c. parametric generation

d. Self-modulation

7. The Z scan technique measures which two among the following quantities?

a. Imaginary $\chi^{(1)}$, Real $\chi^{(1)}$

bImaginary $\chi^{(3)}$, Real $\chi^{(3)}$

c. Imaginary $\chi^{(2)}$, Real $\chi^{(2)}$

Imaginary $\chi^{(4)}$, Real $\chi^{(4)}$

Select the true relation between n_2 and $\chi^{(3)}$, (n_0 being linear index of refraction)

a. $n_2 = \frac{3}{8n_0} \chi^{(3)}$

 $n_2 = \frac{8}{3n_0} \chi^{(3)}$

	c. $n_2 = \frac{\chi^{(3)}}{n_0}$	d.	$n_2 = n_0 \chi^{(3)}$	
9.	Which among the following is not determ a. Nonlinear absorption c. Nonlinear refractive index	b.	y Z-scan technique Raman Effect Two photon absorption	-
10.	In close aperture Z-Scan method, the pha a, peak trails the valley c. no peak and valley appear	b. v	for the case of $\Delta \Phi > 0$, ralley trails the peak none of the above.	
11.	The pump-probe method is successful in a. ultraslow c. stopped light	b.	phenomena. ultrafast none of these	
12.	Sodium lamp used for Laser trapping are a. 5890 nm c. 5890 µm	b	ted in wavelength. 5890 Å 5890 fm	
13.	The widely used laser in astronomy is a. argon laser g. Ruby laser		dye laser CO ₂ laser	
14.	For liver and Lung treatmenta. Argon ion, He-Ne c. Ruby, diod	b.	lasers are widely used. dye, Ruby Argon ion, CO ₂	
15.	For cutting different types of materials, a. argon laser c. Ruby laser	b.	sers can be very useful. dye laser CO ₂ laser	
16.	A step index fiber supports single mode a. V=0 c. V<2.405	b.	gation if the V parameter is V<0 2.405 <v< th=""><th></th></v<>	
17.	Silica fiber made by MCVD method pos a. 340-750 nm c. 1.5-1.6 µm	b.	a communication window. 1.0-1.3 μm 4.0 μm -1.0 mm	
18	 For anomalous dispersion, the group ve a. β₂ < 0 c. β₂ = 0 	b.	dispersion $\beta_2 > 0$ $\beta_2 = \infty$	
19	 At which wavelength the optical fibers a. 850 nm c. 1.55 μm 	b.	s minimum loss about 0.2 dB 1.06 μm 10.06 μm	/km?
20	 Which among the following is described optical fibre? Light collection 	b.	Light scattering	ure in an
	c. Light dispersion	d.	Light polarisation	USTM/COI

Descriptive

me: 2 hrs. 30 mins.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

If a single mode field \vec{E} interacts with a two-level atom, having states $|a\rangle$ (upper) and $|b\rangle$ (lower), with energy eigenvalues $\hbar\omega_a$ and $\hbar\omega_b$ associated with the states, respectively, then using completeness equation and dipole matrix element write the expressions for the following Unperturbed Hamiltonian (H_0) Interaction Hamiltonian (H_i)

- b. What you mean by statistical mixture of states? Discuss the three step process, how density operator enable us to obtain all physical predictions be calculated from state vector $|\psi\rangle$
- 3. What you understand by electromagnetically induced transparancy (EIT)? Discuss briefly about the three basic schemes of EIT.
- Describe the operation of Z-scan technique. Discuss briefly the observations through Open and Close appertures
- a. Discuss briefly the experimental technique of pump-probe 5+5=10 spectroscopy.
 - Discuss why third-order nonlinear materials are important? Give examples of atomic vapour, dye solution and liquid that offer large nonlinearity

do= 2/1 |

USTM/COE/R-01

- 6. a. How can laser cooling be employed to trap neutral atoms?
- 5+5=10
- b. Discuss two techniques how a laser can be used for communication.
- Write briefly about the application of lasers in Plasma as well as for 4+6=10 Thermonuclear fusion.
- Describe the method of fabrication of optical fibers

10

== *** ==

23

4~