B.SC. MATHEMATICS FIRST SEMESTER ALGEBRA BSM – 102 [USE OMR FOR OBJECTIVE PART]

Duration: 1:30 hrs.

Full Marks: 35

(PART-A: Objective)

Time: 15 mins.

c. -10

Marks: 10

Choose the correct answer from the following:

1×20=20

```
    The polar form of i is

            a. e<sup>iπ/2</sup>/2
            b. e<sup>-iπ/2</sup>/2
            c. e<sup>i2π</sup>/2
            d. 0

    The real and imaginary part of -i are respectively

            a. 0 and 1
            b. 1 and 0
            c. 0 and -1
            d. -1 and 0
```

3. For $z = \sin \theta - i \cos \theta$, the value of mod z is

a. 0b. 1c. $\sin \theta$ d. $\cos \theta$

4. If $z = \frac{1-i}{1+i}$ then the conjugate of z is

a. $\frac{1+i}{1-i}$ b. i c. -i d. 1

5. If $\begin{bmatrix} x-2 & 3 & 2z \\ 6y & x & 2y \end{bmatrix} = \begin{bmatrix} y & z & 6 \\ 18z & y+2 & 6z \end{bmatrix}$, then the value of (x, y, z) is equal to

a. (11,3,9)
b. (11,9,3)
c. (3,9,11)
d. None of these

6. The remainder when $x^5 + 2x^4 + x^3 + 5x^2 + 2x + 11$ is divided by x + 1 is **a.** 10 **b.** 22

7. If α is a zero of order r of the polynomial f(x) then

a. $(x - \alpha)^r$ is a factor of f(x).

b. $(x - \alpha)^{r+1}$ is a factor of f(x).

c. Both $(x - \alpha)^r$ and $(x - \alpha)^{r+1}$ are factors of f(x).

d. $(x - \alpha)^r$ is a factor of f(x) but $(x - \alpha)^{r+1}$ is not a factor of f(x).

8. If $f(x) = x^4 + px^2 + qx + r$ has a factor of the form $(x - \alpha)^3$ then (Here $f^n(x)$ denotes the nth derivative of f(x).)

a. $f^3(\alpha) = 0$ b. $f^3(\alpha) \neq 0$ c. $f^2(\alpha) \neq 0$ d. None of these

- 9. If α is a multiple root of the polynomial equation f(x) = 0 of order r then
 - a. α is a multiple root of the polynomial equation f'(x) = 0 of order r

 - c. α is a multiple root of the polynomial equation f'(x) = 0 of order r 1
- 10. If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ then the transpose of A^2 is a. $\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$
 - c. 2A

- b. α is a multiple root of the polynomial equation f'(x) = 0 of order r + 1
- d. α is not a multiple root of the polynomial equation f'(x) = 0
- d. None of these

-- --- --

PART-B: Descriptive Time: 1 hr. 15 mins.

[Answer question no.1 & any two (2) from the rest]

1. If $x^3 + 3px + q$ has a factor of the form $(x - \alpha)^2$ show that

- 2. (a) Find the remainder when $x^5 3x^4 + 4x^2 + x + 4$ is divided by (x + 1)(x -5+5=10
 - (b) Let $f(x) = x^4 x^3 + 2x^2 + 6x 2$. Use the method of synthetic division to find f(x + 2).
- 3. (a) If z_1, z_2 are two complex numbers, then prove that 4+3+3 =10 $|z_1 + z_2| \le |z_1| + |z_2|$
 - (b) Express z in polar form, where
 - (i) z = 1 i

 $q^2 + 4p^3 = 0.$

- (ii) z = -1 i
- 4. (a) If *n* be an integer, prove that $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}$ 5+5=10
 - (b) Fine the real and imaginary part of $z = \frac{2+3i}{2+i}$. Also, find the conjugate of z.

Marks: 25

5

- (a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{bmatrix}$ (b) Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation

$$A^3 - 4A^2 + A = 0.$$

3

USTM/COE/R-01

5+5=10