A

## M.Sc. PHYSICS FIRST SEMESTER CLASSICAL MECHANICS

MSP-103 [REPEAT] USE OMR FOR OBJECTIVE PARTI

Duration: 1:30 hrs.

Full Marks: 35

Objective

Time: 15 mins.

Marks: 10 1×10=10

Choose the correct answer from the following:

1. The generalized force for a conservative potential system  $V = \frac{1}{2}q_k^2$ 

 $a. q_k$ 

- 2. The kinetic energy of a particle of mass m will be  $T = \sum_{k=1}^{\infty} m_k |\vec{q_k}|^2$ . Its canonical momentum will be
  - a.  $p_k = -\sum m_k q_k$

b.  $p_k = \sum m_k q_k$ 

c.  $p_k = -2\sum m_k q_k$ 

d.  $p_k = 2\sum m_k q_k$ 

3. The Hamiltonian of a system is  $H = \frac{p^2}{2m} + V$ . Its Lagrangian will be a  $L = \frac{1}{m}\dot{q}^2 + V$  b.  $L = m\dot{q}^2 + V$ 

c.  $L = \frac{1}{2}m\dot{q}^2 - V$ 

 $d. L = m\dot{a}^2 - V$ 

4. The Lagrangian of system is  $L = \frac{1}{2}m\dot{z}^2 - mgz$ . The Lagrange equations of motions will be

a.  $m\ddot{z} - mg = 0$ 

b.  $m\ddot{z} + mg = 0$ 

c.  $m\ddot{z} + gz = 0$ 

 $d. m\ddot{z} + mg z = 0$ 

(3. The effective potential energy of a charged particle in an electromagnetic field is

a.  $U = q(-\phi - \vec{v} \cdot \vec{A})$ 

b.  $U = q(-\phi - \vec{v} \cdot \vec{A})$ 

c.  $U = q(\phi - \vec{v} \cdot \vec{A})$ 

d.  $U = q(\phi + \vec{v} \cdot \vec{A})$ 

6. The Hamiltonian equations of motions is

a.  $\vec{p}_k = -\frac{\partial H}{\partial \vec{q}_k}$ c.  $\vec{p}_k = -\frac{\partial H}{\partial q_k}$ 

b.  $\vec{p}_k = \frac{\partial H}{\partial q_k}$ d.  $\vec{p}_k = \frac{\partial H}{\partial q_k}$ 

7. The Lagrangian of a system corresponding to the Hamiltonian  $H = \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2}$ 

a.  $\frac{1}{2}m(\dot{r}^2 - r^2\dot{\theta}^2)$ c.  $\frac{1}{2}m(\dot{r}^2 + r\dot{\theta}^2)$ 

b.  $\frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta})$ d.  $\frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2)$ 

8. The velocity of a charged particle in an electromagnetic field is

a.  $\vec{v} = \frac{1}{m}(\vec{p} - \vec{A})$ c.  $\vec{v} = \frac{1}{m}(\vec{p} + q \vec{A})$ 

b.  $\vec{v} = \frac{1}{m}(\vec{p} - q\vec{A})$ d.  $\vec{v} = \frac{1}{m}(\vec{p} + \vec{A})$ 

9. A particle moves under the action of a generalized potential V (q,  $\dot{q}$ ) =  $\frac{1+\dot{q}}{q^2}$ . The magnitude of the generalized force is

a. 
$$\frac{2(1+\dot{q})}{q^3}$$

b. 
$$\frac{2\dot{q}}{q^3}$$
d.  $\frac{2(1-\dot{q})}{q^3}$ 

a. 
$$L = \frac{1}{2}m l^2(\dot{\theta}^2 + \sin^2\theta \dot{\varphi}^2) + mgl \sin\theta$$
  
c.  $L = \frac{1}{2}m l^2(\dot{\theta}^2 + \sin^2\theta \dot{\varphi}^2) - mgl \sin\theta$ 

10. The Lagrangian of a spherical pendulum is

a. 
$$L = \frac{1}{2}m l^2(\dot{\theta}^2 + \sin^2\theta \dot{\varphi}^2) + mgl \sin\theta$$

b.  $L = \frac{1}{2}m l^2(\dot{\theta}^2 + \sin^2\theta \dot{\varphi}^2) - mgl \cos\theta$ 

c.  $L = \frac{1}{2}m l^2(\dot{\theta}^2 + \sin^2\theta \dot{\varphi}^2) - mgl \sin\theta$ 

d.  $L = \frac{1}{2}m l^2(\dot{\theta}^2 + \sin^2\theta \dot{\varphi}^2) + mgl \cos\theta$ 

Time: 1 hr. 15 min.

Marks: 25

## [ Answer question no.1 & any two (2) from the rest ]

- 1. A particle of mass m moves in x-y plane under a potential  $V = -\frac{k}{r'}$ , where k is a constant. Construct the Lagrangian and its equations of motions.
- a. Define Hamiltonian of a system.
  b. Find the Hamiltonian equations of motion for a conservative system.
  - c. Obtain the Hamiltonian for a system whose Lagrangian is  $L = \left(\frac{1}{2}a\,\dot{x}^2 + \frac{1}{2}b\,\dot{y}^2\right).$
  - a. Obtain the Lagrangian for a double pendulum vibrating in a 6+4=10 vertical plane.
    - b. Find the equation of motion for a double pendulum for anyone generalized coordinates.
- 4. a. The force acting on a particle of m and charge q moving with a velocity  $\vec{v}$  in an electric field  $\vec{E}$  and magnetic field  $\vec{B}$  is given by  $\vec{F} = q$  ( $\vec{E} + \vec{v} \times \vec{B}$ ). Obtain the Lagrangian defining the motion of such particle.
  - b. Find the canonical momentum of the charged particle.
- 5. a. Find the Hamiltonian of a simple pendulum. 4+6=10
  - **b.** Obtain the Hamiltonian equation of motion of a simple pendulum.

== \*\*\* = =