REV-01 MSC/68/34/39

M.Sc. CHEMISTRY THIRD SEMESTER ORGANIC CHEMISTRY- III MSC – 301

MSC – 301 [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

(Objective)

Time: 30 min.

Marks: 20

2023/12

B

Choose the correct answer from the following:

1x20 = 20

- The catalyst used by Noyori for asymmetric hydrogenation consist of
 - a. Rh

b. Ir

c. Ru

- d. W
- 2. The product of the following asymmetric synthesis is

- 3. Jacobsen-Katsuki Epoxidation used the metal
 - a. Zn

b. Mg

c. Mn

- d. Cu
- 4. The term retrosynthetic analysis coined by
 - a. K B Sharpless

b. E J Corey

c. E. N. Jacobsen

- d. H O House
- 5. The nucleotides are joined to one another by phosphodiester bonds between the 3'-hydroxyl group of deoxyribose sugar of one nucleotide and the 5'-phosphate group of the next nucleotide forming an alternating-----
 - a. Nucleoside-phosphate backbone
- b. Nucleotide-phosphate backbone
- c. Sugar-phosphate backbone
- d. Glycoside-phosphate backbone
- The method of combination of a silylated heterocycle and protected sugar acetate in the presence of a Lewis acid resulting in the formation of a mono-nucleoside is called
 - a. silyl-Hilbert-Johnson method
- b. The fusion method
- c. The metal salt method
- d. none of these
- In more recently developed metal salt method of the chemical synthesis of mononucleoside, the metal used as the metal salt of the base with a protected sugar halide
 - a. sodium

b. gold

c. silver

d. nickel

8.	The precess by which methyl guaposine triphes phate gets attached at the E' and of	
	The process by which methyl guanosine triphosphate gets attached at the 5' end of hnRNA produced during eukaryotic transcription is called	
	a. Capping	b. Tailing
	c. Splicing	d. None of the above
9.	In a nucleoside, the anomeric carbon of sugar is linked through a glycosidic bond to	
	the	0 07
	 N-7 of a purine or the N-1 of a pyrimidine. 	b. N-5 of a purine or the N-1 of a pyrimidine.
	c. N-9 of a purine or the N-2 of a pyrimidine.	d. N-9 of a purine or the N-1 of a pyrimidine.
10.	The oxidizing agent used in Sharpless epoxidation is	
	a. CrO ₃	b. BuOOH
	c. CF ₃ COOH	d. KMnO ₄

c. 59 d. 79

11. The triplet energy of benzophenone in kcal/mol is

- 12. The major route that Cyclobutanone follows in Norish-I reaction in alcohol is a. decarbonylation b. hydrogen abstraction c. Five membered ring formation d. Three membered ring formation
- 13. The major product obtained from the following molecule under photochemical reaction condition will be via

- a. α-cleavage (C-C bond) b. β-cleavage c. α-cleavage (C-O bond) d. γ-H abstraction
- 14. The reaction is an example of:

- a. [5,5]sigmatropic rearrangement
 - b. [3,3] sigmatropic rearrangement
- c. [1,3]sigmatropic rearrangement
- d. [1,7]sigmatropic rearrangement
- 15. Which one of the followings is correct for the most of the carbonyl compounds?

a.
$$S_0 \longrightarrow S_1$$
 corresponds to $\pi \longrightarrow \pi^*$

b.
$$S_0 \longrightarrow S_1$$
 corresponds to $n \longrightarrow \pi^*$

$$S_1 \longrightarrow S_2$$
 corresponds to $\pi \longrightarrow \pi^*$

d.
$$S_0 \longrightarrow S_1$$
 corresponds to $n \longrightarrow \pi^*$

16. the following conversion take place through

- a. 4n disrotation and 6n conrotation
- b. 4π conrotation and 6π disrotation
- с. 4п disrotation and 6п disrotation
- d. 6n conrotation and 4n disrotation
- 17. The product of the following electrocyclic ring closing reaction

- 18. Barton reaction occurs upon photolysis on
 - a. phospho ester

b. nitrite ester

c. carboxylic ester

- d. organic nitrates
- 19. The reaction of 1-bromo 2-fluoro benzene with furan in presence of one equivalent of Mg gives:

- 20 1,3 dipolar compounds are
 - a. 4 centre 4-electron system
 - c. 3 centre 3-electron system
- b. 3 centre 4-electron system
- d.3 centre 4-electron system

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins.

Marks:50

3

2

2

3

[Answer question no.1 & any four (4) from the rest]

1. a. Write the major product of the following reactions with justification

O + NC CN hv Major product

b. Match the following

(i) || + O₃ -----

- (a) electrocyclic reaction
- (ii) 6 N
- (iii) ONMe₂ NMe₂
- (c) [2,3] sigmatropic shift
- (d) [3,3] sigmatropic shift
- c. Starting from (S)- (-) Leucine how will you synthesize the corresponding (s)-hydroxy acid. Show the mechanistic pathway.
- d. What are codons? Explain the term "degeneracy of codons" with examples?

2. a. Write the probable products of the following reactions with justification

(i)
$$S_0$$
 hv Products
(ii) hv Products
 S_0 Products

- b. Explain with justification the type of excited state of carbonyl compound involves in the α -cleavage (C-C bond cleavage) reaction.
- c. Write the probable major products of the following reactions with justification

3. a. Identify the reagent (A) and the products (B & C) of the following reactions. Show the reaction mechanism.

3+2=5

b. Write the major products of the following reactions

c. Explain post transcriptional modification of hnRNA.

2

d. Define translation What are the different RNAs taking part in the process of translation. Explain their role in this process.

3

4. a. What are nucleosides? How do they differ from nucleotides? Draw the structure of a DNA dinucleotide formed with the bases adenine and thymine and show the formation of phosphodiester bond.

5+3+2 =10

- **b.** Describe in brief the structure DNA molecule with a neat diagram.
- **c.** Write down the basic differences between prokaryotic and eukaryotic transcription.
- 5. **a.** Write the starting material for the following Diels Alder reaction product. 2+2+3+3 =10

- b. Write note on Cope rearrangement.
- c. Justify the formation of the following reaction:

d. Write down the product formed.

- 6. a. What are ene-reactions? Explain with suitable example.
- 2+2+3+3=10
- **b.** Find out the order of following sigmatropic rearrangements:

c. Predict the products **X** and **Y** in the following sequence of pericyclic reactions.

 d. Predict the product formed in the following reaction with mechanism,

7. a. What is the product of the following reaction? Deduce the structure. 2+2+2+4 = 10

- **b.** Draw the structure of (R)-Ru(OAc)₂(BINAP) and (S)-Ru(OAc)₂(BINAP)
- c. Write down the product X and Y

- **d.** Draw the structure of Jacobsen's Catalyst and deduce the mechanistic pathway for its synthesis.
- 8. a. Deduce the detailed cyclic mechanistic pathway of Noyori asymmetric hydrogenation reaction.
 - **b.** Through retrosynthetic analysis write the all the possible disconnection approach, synthons and their synthetic equivalent for the following compound. Mention the best synthetic pathway to prepare the compound.

== *** ==

5+5=10