Duration: 1:30 hrs.

2023/12

SET

Full Marks: 35

M.Sc. PHYSICS THIRD SEMESTER CONDENSED MATTER PHYSICS- I MSP - 303A

[USE OMR FOR OBJECTIVE PART]

(PART-A: 0	Objective)		
Time: 15 min.	Marks: 10		
Choose the correct answer from the	e following: 1X10=10		
1. In the tight-binding model, it is assumed	n the tight-binding model, it is assumed that the crystal potential is		
a. weakc. neither weak nor strong	b. strong d. absent		
2. For nonionic and nondipolar substances, the anionic contributionc. electronic contribution	he polarizability is entirely due to the b. dipolar contribution d. none of these		
 With increasing the magnetic field, the deg a. decreases remains same 	generacy of each of the Landau levels b. increases d. none of these		
4. In the de Haas – van Alphen effect, the osc a. resistivity c. magnetic moment	illatory behavior is observed in b, thermal conductivity d, polarizability		
 The criteria to observe integer quantum I a, low temperature, high magnetic field e, high temperature, low magnetic field 	lall effect b. high temperature, high magnetic field d. low temperature, low magnetic field		
 Meissner effect is the phenomenon of a. perfect diamagnetism c. ferromagnetism 	b. paramagnetism d. none of these		

7. The binding energy is strongest in a Cooper pair, when the two electrons have the following states (*k* is the momentum and the arrow indicates the direction of spin)

		the state of the s	till our mic	mund of the time to	
	a.	$k\uparrow,k\uparrow$	b.	$k\uparrow,-k\uparrow$	
	c.	$k\uparrow,-k\downarrow$	d.	$k \downarrow, k \downarrow$	
8.	The binding energy of a Cooper pair is (in eV)				
	a.	10-1	b.	10^{-2}	
	c.	10 -1	d.	10^{-4}	

9. For a ID chain, the energy dispersion relation is $E(k) = E_{\nu} - \beta - 2\gamma \cos(ka)$. Assuming E_{ν} , β and γ to be constants, the band width would be

b.

 2γ

a. c.

47

d.

67

10. Josephson effect occurs in junctions like

a. Metal-insulator-metal

c. Insulator-superconductor-insulator

 $\label{eq:b.superconductor} \textbf{b.} \frac{\text{Superconductor-insulator-superconductor}}{\text{superconductor}}$

d. Insulator-metal-insulator

Time: 1 hr. 15 mins.

Marks: 25

[Answer question no.1 & any two (2) from the rest [

t. a. The number of states in each Landau levels is given by

3+2=5

$$N = \frac{qBA}{2\pi\hbar}$$

Where q, B, A are the electronic charge, magnetic field strength, and area of the sample, respectively. Find out N in a region of $A = 1 \text{ cm}^2$ at B = 0.1 T rsia.

b. Draw the allowed electron crbitals in two dimensions in the absence and presence of magnetic field in the k_x-k_y plane.

6+4=10

a. What are the sources of contribution to the local field E_{toc}, that was introduced by Lorentz. Discuss each term with a proper diagram. (No mathematical expression is required)

- **b.** What are the differences between the Maxwell field E and Lorentz field E_{loc} .
- a. The energy of the band in the tight-binding model:

6+4=10

$$E(\vec{k}) = E_{\nu} - \beta - \gamma \sum_{i} e^{i\vec{k}\cdot\vec{X}_{i}}$$

Where β and γ are constants, \vec{X}_j is the position of the j-th atom relative to the atom at the origin.

Find the energy expression for a *simple cubic* lattice, using the neare t-peighbor approximation.

- b. Draw the first three Brillouin zones for a square lattice with lattice spacing a.
- s. Write a short note on giant magaetoresistance.

5+5=10

b. Write a short note on integer quantum Hall effect.

- 5. a. Draw the H M diagram for type-1 and type-2 superconductors.
 b. Discuss the two-fluid model.

4

4+6=10