RI-Y-01 MSP/04/09

M.Sc. PHYSICS THIRD SEMESTER PLASMA PHYSICS MSP - 303B **JUSE OMR FOR OBJECTIVE PART**[

SET

2023/12

Duration: 1:30 hrs.

Objective

Time: 15 mins.

Choose the correct answer from the following:

Marks: 10

Full Marks: 35

1X10=10

1. Which temperature is generally responsible for maintaining the Debye length?

a. Ion temperature

- b. Electron and Ion temperature
- c. Electron temperature
- d. None of the above
- 2. Which of the following is a characteristic property of plasma?
 - a. Definite shape and volume
- b. Inability to conduct electricity
- High sensitivity to magnetic field
- d. High viscosity
- In a tokamak, what is the main purpose of a toroidal magnetic field?
 - To heat the plasma

- b. To contain plasma within a torusshaped vessel
- To create turbulence in the plasma
- d. To increase the density of the plasma
- 4. If a charged particle is loosely bound to the magnetic field, which of the following statement is true?
 - Its motion becomes circular and stops
 - propagating

- b. Its velocity decreases
- c. Its gyroradius increases
- d. Its mass decreases
- The plasma frequency is proportional to which of the following?
 - a. Temperature

b. Pressure

c. Both A and B

- d. Density
- 6. Which of the following criteria for a gas to behave like plasma is incorrect?
 - a. $N_D \gg 1$

b. $\omega_p \tau > 1$.

c. $\lambda_D \ll L$

- d. None of the above
- 7. In case of a curvature drift, which of the following option for total drift velocity is correct?

$$\mathbf{a.} \ \mathbf{V}_D = \frac{m v_{\parallel}^2}{q B^2} \frac{\mathbf{R} \times \mathbf{B}}{R^2}$$

b.
$$V_R + V_{\nabla R} = \frac{m}{aB^2} \frac{R \times B}{R^2} \left(v_{||}^2 + \frac{v_1^2}{2} \right)$$

c.
$$V_D + V_{VB} = \frac{m}{qB^2} \frac{R \times B}{R^2} \left(\frac{v_k^2}{2} \right)$$

d.
$$V_{\nabla B} = \frac{m}{qB^2} \frac{R \times B}{R^2} \left(v_{||}^2 + \frac{v_1^2}{2} \right)$$

8. What type of waves are Alfvén waves considered to be?

a. Longitudinal

b. Transverse

c. Both A and B

- d. None of the above
- What happens to the mirror ratio when the magnetic field strength at the narror costs increases?

-- --- --

a. The mirror ratio increases

c. The mirror ratio remains the same

- b. The mirror ratio decreases
- d. The mirror ratio becomes intipite

10. Plasma beta is a ratio of?

a. Kinetic pressure to Magnetic pressurec. Magnetic moment to kinetic pressure

- b. Magnetic pressure to kinclic pressure
- d. Kinetic pressure to magnetic moment

Descriptive

Vine: 1 hr. 15 mins. Marks: 25

[Answer question no.1 & any two (2) from the rest [

- Explain the concept of 'Frozen-in magnetic field'. In this connection date and estable haltvé a theorem.
 Using Maxwell's velocity distribution show that the average thermal kinetic energy per plasma particle is equal to ³/₂ k_BT. I lence give a kinetic interpretation of plasma temperature.
- 3. a. Explain the concept of Debye shielding and Debye sphere in placina. 6+4=10
 - Describe the concept of plasma frequency and derive its expression.
- 4. c What do you mean by adiabatic invariants in plasma? Write down the expressions of the adiabatic invariants.
 - b. Explain the concept of magnetic mirror and establish the relation between the pitch angle and mirror ratio
- 5. a. Write down the complete set of fluid equations for a simple two-component plasma under warm plasma approximation.
 - Using hydrodynamic approach derive the equation of continuity for a fluid plasma.
 - c. Establish the equation of motion for a collisionless plasma described by a scalar pressure.

== *** - =