RI-V-01 MSM/25/30

M.Sc. MATHEMATICS FIRST SEMESTER ABSTRACT ALGEBRA I

MSM -- 103 JUSE OMR FOR OBJECTIVE PARTI

Duration: 1:30 hrs.

Full Marks: 35

Time: 15 mins.

(Objective)

Marks: 10

2023/12

SET

A

Choose the correct answer from the following:

1×10=10

1.	Let $U(n)$ be the set of all positive integers less than n and relatively prime to n . Then
	U(n) is a group under multiplication modulo n . For $n = 248$, the number of elements
	in $U(n)$ is

a. 180

b. 120

c. 240

- d. 60
- 2. Let G be a group. Suppose G has subgroups of order 45 and 75. If |G| < 400, then |G| is equal to
 - a. 90

b. 150

c. 175

d. 225

- 3. The group \mathbb{Z}_8^* is
 - Cyclic and all of its subgroups are also cyclic.
 - Cyclic and some of its subgroups are cyclic.
- b. Non-cyclic but all of its subgroups are cyclic.
- d. Non-cyclic bat some of its subgroups are cyclic.
- 4. The number of elements in $Aut(\mathbb{Z}_{25})$ is?
 - a. 15

b. 20

c. 25

- d. 30
- 5. The value of for which = $\{1, 3, 9, 19, 27\}$ is a cyclic group under multiplication modulo 56 is
 - a. 5

b. 15

c. 20

- d. 25
- 6. Upto isomorphism, the number of Abelian group of order 121 is
 - a. 1

b. 10

c. 2

- d. 11
- 7. Which of the following is/ are true?
 - a. $\mathbb{Z}_3 \oplus \mathbb{Z}_7$ is isomorphic to \mathbb{Z}_{21}
- b. $\mathbb{Z}_4 \oplus \mathbb{Z}_6$ is isomorphic to \mathbb{Z}_{24}
- c. (10) is isomorphic to (12).
- d. (8) is isomorphic to (10).

- 8. Which of the following is/are false?
 - a. 3 is the smallest non-cyclic group.
- b. All subgroups of 3 is cyclic.

c. $|(3)| \neq 1$

- d. None of these.
- 9. Let be a group of order 120 and let be a subgroup of . If ||=60 then which of the following is always true
 - a. is a normal subgroup of .

 - c. may or may not be a normal subgroup of .
- b. is not a normal subgroup of.
- d. Data insufficient.
- 10. Consider the following statements:
 - P: Every finite cyclic group of order is isomorphic to $\mathbb Z$ and every infinite cyclic group is isomorphic to \mathbb{Z} .
 - **Q**: \mathbb{Z}_{37} is a cyclic group.
 - R: Every Abelian group is cyclic but not conversely.
 - **S**: Every subgroup of a finite cyclic group is cyclic.
 - a. Only P is true

- b. Only P and Q are true
- c. Only P, Q and R are true
- d. Only P, Q and S are true

Descriptive

Time: 1 hr. 15 min. Marks: 25

1. Determine all homomorphisms from \mathbb{Z}_{30} to \mathbb{Z}_{12} .

[Answer question no.1 & any four (4) from the rest]

- 2. a. Determine the number of elements of order 5 in Z₂₅ × Z₂₀.
 b. Find all cyclic subgroup of S₃.
 c. Prove that A_n is a normal subgroup of S_n.
- 3. a. Find all the generator of U(25).
 b. Show that The center of a group G is a subgroup of G.
 c. Find the identity element of the group {5, 15, 25, 35} under
- 4. a. Prove or disprove that- A₄ has no subgroup of order 6.
 b. Find the number of Sylow 3-subgroups and Sylow 11-subgroups of a group of order 99.
 c. Prove or disprove that U(12) ≈ U(10).
- 5. a. Let σ and τ be the permutation defined by $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3 & 5 & 7 & 9 & 6 & 4 & 8 & 2 \end{pmatrix}$ $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{pmatrix}$ This latter that τ is the permutation defined by $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 3 & 4 & 9 & 6 & 5 & 2 & 1 \end{pmatrix}$

Find the inverse of $\sigma \& \tau$ and find their order. Also, prove or disprove the followings:

- (i) σ and τ commute each other.
- (ii) $<\sigma>\cap<\tau>$ has order 1.

multiplication modulo 40.

- b. Let $\beta \in S_7$ and suppose $\beta^4 = (2143567)$. Find β .
- c. Show that A_5 has 20 elements of order 3, and 15 elements of order 2.

== *** = =

USTM/COE/R-01

5