REV-01 MSM/24/29

M.Sc. MATHEMATICS THIRD SEMESTER NUMBER THEORY MSM - 302

[USE OMR FOR OBJECTIVE PART]

Duration: 1:30 hrs.

Full Marks: 35

2023/12

SET

Δ

Objective

Time: 15 mins.

Marks: 10

1X10 = 10

Choose the correct answer from the following:

1. The remainder obtained when 16²⁰¹⁶ is divided by 9 equals a. 1 b. 3

c. 5

2. Which of the following congruence has no solution

 $\mathbf{a.}\ 37x \equiv 1 \pmod{12}$

b. $5x \equiv 2 \pmod{26}$

c. $6x \equiv 15 \pmod{21}$

d. $39x \equiv 1 \pmod{13}$

3. Which of the following primes satisfy the congruence

 $a^{24} - 6a - 2 \equiv 0 \pmod{13}$?

a. 41 c. 83 b. 67

d. None of these

4. Consider the congruence $x^n \equiv 2 \mod 13$. This congruence has a solution if

1

a. n = 4

b. n = 5

c. n = 6

d. None of these

5. Which of the following equation have [1;2] as a continued fraction representation

a. $2x^2 - 2x + 1 = 0$ c. $2x^2 + 2x - 1 = 0$ **b.** $2x^2 - 2x - 1 = 0$ d. None of these

Which of the following is/are convergent of [2; 3, 2, 5, 2, 4, 2]

a. 78

b. $\frac{191}{83}$ d. $\frac{1885}{823}$

a. 38 c. 817 370

7. If *p* is a factor of $2^{\frac{p-1}{2}} + 1$ then

 $a. p \equiv 7 \pmod{8}$

 $\mathbf{b}.p \equiv 5 \pmod{8}$

 $c. p \equiv 1 \pmod{8}$

d. None of these

The value of $[0; 1, 1, 1, 1, \cdots 1]$ is

 $\frac{I_{n+1}}{I}$ (F_n denotes the nth Fibonacci a. F_n number)

c. $\frac{1-\sqrt{5}}{2}$

b. $\frac{F_n}{F_{n+1}}$ (F_n denotes the nth Fibonacci number)

d. $1+\sqrt{5}$

```
9. The value of gcd(F<sub>14</sub>, F<sub>39</sub>) is

a. 1
b. F<sub>11</sub>
c. 21
d. 89

10. Which of the following is/are true?

a. 6 is the integer root of x² + x + 1 ≡ 0 (mod 7)
c. 67 ≡ 6 (mod 7)
d. 6<sup>7</sup> ≠ 6 (mod 7)
```

2

Descriptive

Time: 1 hr. 15 mins.

[Answer question no.1 & any two (2) from the rest]

- 1. Find the value of [3; 1,1,1,1,6].
- 2. a. Prove that $-F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ where F_n denotes the nth Fibonacci numbers.
 - b. Prove that-

$$\left(\frac{-2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv \pmod{8} \\ -1 & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv \pmod{8} \end{cases}$$

- 3. a. Prove that $-\phi(2^n-1)$ is a multiple of n for any n>1.

 2+6+2

 5. Solve the congruence $x^3 \equiv 5 \pmod{13}$.
 - c. Solve the congruence $7^x \equiv 7 \pmod{13}$.
- 4. a. Prove that-3 is a primitive root of any prime of the form $2^{2^{n}} + 1, n > 1.$ 4+3+3 = 10
 - **b.** Evaluate the Legendre symbol $\left(\frac{3658}{12703}\right)$.
 - c. For an odd prime p_r prove that the congruence $2x^2 + 1 \equiv 0 \pmod{p}$ has a solution if and only if $p \equiv 1$ or $3 \pmod{8}$.
- 5. a. Find the smallest positive integer solution of $x^2 14y^2 = 1$. 8+2=10
 - b. Prove that: $F_1 + F_2 + F_3 + \dots + F_n = F_{n+2} 1$, here F_n denotes the nth Fibonacci number.

== +++ = =

Marks: 25