REV-01 MSP/03/08

M.Sc. PHYSICS **FOURTH SEMESTER** THEORY OF RELATIVITY-II **MSP-403E [USE OMR FOR OBJECTIVE PART]**

Full Marks: 70

Duration: 3 hrs.

(Objective)

Marks: 20

2023/06

Choose the correct answer from the following:

1X20 = 20

Two photons approach each other. Their relative velocity will be

a. c

Time: 30 min.

c. c/2

b. 0

d. 2c

The velocity of a rocket ship is v=0.1c. The percentage of decrease in length will be?

a. 10%

b. 98%

c. 99%

3. Which one of the following expression is correct for the surface charge density?

a.
$$\sigma' = \sigma \sqrt{1 - \sigma}$$

b. $\sigma' = \sqrt{1-\beta^2}$

a. $\sigma' = \sigma \sqrt{1 - \beta^2}$ c. $\sigma' = \sigma / \sqrt{1 - \beta^2}$

$$d. \sigma' = \sigma$$

4. If $A^{\mu} = (0, r^2)$ and $g_{\mu\nu} = \text{diag}(-1, r^{-2})$ then A_{μ} will be

a.(0,1)

c. (-1, 1) 5. The determinant of the metric tensor $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{pmatrix}$ is b. r^2 d. (1, 1)

a. -1

6. The product of $g_{\varphi\varphi}$ $g^{\varphi\varphi}$ in the line-element $ds^2=dr^2+\alpha^2\,r^2d\varphi^2$ will be?

a. $\alpha^2 r^2$

b. $\frac{1}{\alpha^2 r^2}$ d. 1

c. $\frac{\alpha^2}{r^2}$

7. The number of independent components in the Einstein tensor $G^{\alpha\beta}$ will be?

b. 7

d. 6

The Riemann curvature tensor $R^{\alpha}_{\beta\gamma\delta}$ is a tensor of rank

d. 1

9. The rank of the mixed tensor $\delta_{\alpha}^{\tau} \delta_{\sigma}^{\mu} A_{\rho \tau}^{\sigma}$ is

b. 3

d. 5

10. The Ricci tensor $R^{\alpha\beta}$ is a tensor of rank

b. 4

USTM/COE/R-01

d. 2 c. 1

11. The Hubble parameter *H* is defined by

a.
$$\frac{a(t)}{\dot{a}(t)}$$
 b. $\frac{\dot{a}(t)}{a(t)}$ c. $\frac{1}{\dot{a}(t)}$ d. $\dot{a}(t)$

12. In FRW metric, the value of k for which the geometry represents a closed space will be?

13. For a radiation fluid, the pressure p is related with the energy density ρ by

a.
$$p = \frac{1}{3} \rho$$

b. $p = \rho$
c. $\rho = \frac{1}{3} p$
d. $p = -\rho$

14. A vector X^{μ} is said to be null if

a.
$$X^{\mu}X_{\mu} < 0$$
 b. $X^{\mu}X_{\mu} > 0$ c. $X^{\mu}X_{\mu} = 0$ d. None of these

15. If the Ricci tensor $R^{\alpha\beta}$ is a symmetric and 2nd rank tensor then the Einstein tensor $G^{\alpha\beta}$

16. Which one of the following option is correct?

a.
$$A^{\mu}_{;\mu} = \frac{1}{g} \frac{\partial}{\partial x^{\mu}} (\sqrt{g} A^{\mu})$$

b. $A^{\mu}_{;\mu} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\mu}} (\sqrt{g} A^{\mu})$
c. $A^{\mu}_{;\mu} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\mu}} (g A^{\mu})$
d. $A^{\mu}_{;\mu} = \frac{1}{g} \frac{\partial}{\partial x^{\mu}} (g A^{\mu})$

17. For an Einstein in de-Sitter space-time, the cosmological constant Λ is

For an Einstein in de-Sitter space-time, the cosmological constant
$$\Lambda$$
 is
a. $\Lambda > 0$ b. $\Lambda = 0$ c. $\Lambda < 0$ d. None of these

18. If the norm of a vector X_u is time-like and the Lie derivative of the metric tensor vanish, $L_X g_{\mu\nu} = 0$, then the vector is said to be

19. The electromagnetic field tensor $F_{\mu\nu}$ is defined by

a. $\partial_{\mu}A_{\nu}$

c.
$$\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 d. $\partial_{\nu}A_{\mu}$ 20. For vacuum field equations with zero cosmological constant, which one of the

following option is correct?

a.
$$G_{\mu\nu} = 0$$
 but $R_{\mu\nu} \neq 0$
b. $R_{\mu\nu} = 0$ and $R = 0$
c. $R_{\mu\nu} \neq 0$ and $R = 0$
d. $G_{\mu\nu} = 0$ and $R_{\mu\nu} = 0$

b. $\partial_{\nu}A_{\mu} - \partial_{\mu}A_{\nu}$

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins.

vanishes.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

- 1. a. What do you meant by a metric tensor? 2+8=10
 - **b.** By considering the variation of $\int ds$, derive the geodesic equation

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{v\sigma} \frac{dx^{\nu}}{ds} \frac{dx^{\sigma}}{ds} = 0.$$

- 2. a. Derive the relation between the Ricci tensor $R_{\alpha\beta}$ and the stressenergy tensor $T_{\alpha\beta}$ =10
 - b. Find the condition for vacuum Field equations.
 - c. What do you mean by perfect fluid? Write its energy momentum tensor.
- 3. a. Define Christoffels 3-index symbols. 2+4+4 b. Find the divergence of a contravariant vector A^{μ} . =10
 - c. If A_{μ} is a tensor, then show that $\partial_{\nu}A_{\mu} \Gamma^{\sigma}_{\mu\nu}A_{\sigma}$ is also a tensor. What is the nature of this tensor?
- 4. a. What do you mean by Killing vector?
 b. Show that Lie derivative of a metric tensor w. r. t. Killing vector
 - c. Derive the Killing equation of a metric tensor.
- 5. a. Show that $G_{v:\mu}^{\mu} = 0$, where G_v^{μ} is the Einstein tensor.

 6+2+2

 b. Write down the relation between the Einstein tensor and the
 - Ricci tensor.
 c. What is the cyclic property of the Riemann curvature tensor?
- 6. a. Show that in a weak field approximation the geodesic equation reduces to the Newton equation.

 5+3+2
 =10
 - **b.** Explain the red shift phenomena of the Schwarzschild vacuum solution.
 - c. What is the experimental value of bending of light in Schwarzschild vacuum solution?

7. **a.** For a vacuum field equations, find A(r) and B(r) using the following spherically symmetric metric

$$ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

- **b.** Under what condition the above line-element becomes flat space?
- c. For a Schwarzschild solution writes the function A(r) and B(r).
- 8. a. What is Cosmology?
- $\frac{2+6+2}{4} = \frac{\rho}{3}, \text{ where symbols}$

6+2+2

=10

- **b.** Derive the Friedmann equation $\left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2} = \frac{\rho}{3}$, where symbols have their usual meanings.
- c. Define Hubble parameter.

== *** = =