REV-01 MSP/34/17/22

2023/06

SET B

## M.Sc. PHYSICS **FOURTH SEMESTER** STATISTICAL PHYSICS

MSP – 401 [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs. Full Marks: 70

[ PART-A: Objective ]

arks: 20

20=20

| Time: 30 min. |                                                                                                                                                                       |                                                       | Marks:           |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|--|
| C             | Choose the correct answer from t                                                                                                                                      | he following:                                         | 1X20=2           |  |
| 1.            | The spin of a photon is                                                                                                                                               |                                                       |                  |  |
|               | a. zero                                                                                                                                                               | b. $\frac{h}{2}$ d. $\frac{3h}{2}$                    |                  |  |
|               | c. h                                                                                                                                                                  | d. $\frac{3h}{2}$                                     |                  |  |
| 2.            | At what temperature, He-4 becomes a superfluid?                                                                                                                       |                                                       |                  |  |
|               | a. 2.17 K<br>c. 4.2 K                                                                                                                                                 | b. 2.0 K<br>d. 5.2 K                                  |                  |  |
| 3.            | What is the value of occupation index of the Fermi energy?                                                                                                            | of fermions at $T = 0 K$ and ene                      | rgy greater than |  |
|               | <b>a.</b> 0                                                                                                                                                           | <b>b.</b> 1                                           |                  |  |
|               | c. infinity                                                                                                                                                           | <b>d.</b> any value between 0                         | and 1            |  |
| 4.            | The specific heat of a metal at low temp proportional to                                                                                                              | erature, Cv divided by the ter                        | mperature T is   |  |
|               | a. T                                                                                                                                                                  | <b>b.</b> T <sup>2</sup>                              |                  |  |
|               | c. T <sup>3</sup>                                                                                                                                                     | $d.T^{3/2}$                                           |                  |  |
| 5.            | The number of meaningful ways is compartments is                                                                                                                      | n which 4 fermions can b                              | pe arranged in   |  |
|               | a. 3                                                                                                                                                                  | b. 4                                                  |                  |  |
|               | <b>c.</b> 5                                                                                                                                                           | d. 6                                                  |                  |  |
| 6.            | Which of the following is a second order phase transition?  a. Liquid water to ice b. Water vapour to liquid water c. Ice to water vapour d. Normal to superconductor |                                                       |                  |  |
| 7.            | Which of the following is the point whe a. Double c. Unique                                                                                                           | re all phases of a water coexis b. Triple d. Critical | t?               |  |
| 8.            | Which of the following heats is required for phase transition?                                                                                                        |                                                       |                  |  |
|               | a. Latent                                                                                                                                                             | b. Fusion '                                           |                  |  |
|               | c. Vaporization                                                                                                                                                       | d. Absorption                                         |                  |  |
|               |                                                                                                                                                                       |                                                       |                  |  |

in 5

- 9. Partition function of an equilibrium system is given by
  - a.  $\sum_{i} g_{i}e^{\alpha-\beta E_{i}}$ c.  $\sum_{i} e^{-\beta E_{i}}$

**b.**  $\sum_i g_i e^{-\beta E_i}$ 

- d.  $\sum_i g_i e^{\alpha + \beta E_i}$
- 0. In canonical ensemble, the r.m.s fluctuation in energy is
  - a.

c.

- 1. Which of the following statement is false? In classical statistics, the particles
  - a. have a certain degree of togetherness as well as separateness. Liouville's theorem gives the
  - c. principle of conservation of energies of particles.
- Maxwell-Boltzmann statistics
- b. describes the distribution of gas molecules. In Grand canonical ensemble, the
- d. system is separated by rigid, permeable and conducting walls.
- 12. In case of Maxwell-Boltzmann velocity distribution curve, which one of the following is correct?
  - As T increases, the distribution
  - becomes narrow.
  - As T increases, the distribution gets
  - c. sharper.

- As T increases, the distribution spreads
- As T decreases, the distribution spreads out.
- 13. In case of Maxwell-Boltzmann statistics, the molecular size is
  - a. Negligible
  - c. Less than the intermolecular distance
- b. Equal to the intermolecular distance
- d. More than the intermolecular distance
- 14. The thermodynamic probability of Maxwell-Boltzmann distribution is
  - a.  $N! \frac{g_i}{ni!}$
  - c.  $N \frac{g_i^{n_i}}{n_i!}$

- b.  $N! \frac{g_i^{n_i}}{n_i}$ d.  $N! \frac{g_i^{n_i}}{n_i!}$
- 15. Langevin's function is
  - a.  $L(x) = Coth(x) + \frac{1}{x}$ <br/>c.  $L(x) = Cot(x) + \frac{1}{x}$

- b. L(x) = Coth(x)
- $d. L(x) = Coth(x) \frac{1}{x}$
- 16. Curie's law of paramagnetism is

- 117. Maxwell-Boltzmann distribution function is given by  $n_i =$ 
  - a.  $\frac{g_i}{e^{\alpha+\beta E_i}-1}$ c.  $\frac{g_i}{e^{\alpha-\beta E_i}}$

b.  $\frac{g_i}{e^{\alpha+\beta E_i+1}}$ d.  $\frac{g_i}{e^{\alpha+\beta E_i}}$ 

- 118. In canonical ensemble, which of the following is true?
  - a. Energy can vary from 0 to infinity
- b. Energy does not vary at all d. Energy is restricted
- c. Energy can vary from 0 to 1
- 19. The difference between fermions and bosons is that bosons do not obey \_ b. Pauli's exclusion principle
  - a. Aufbau principle
  - c. Hund's rule of maximum multiplicity d. Heisenberg's uncertainty principle
- 20. Fermi-Dirac statistics cannot be applied to
  - a. Electrons c. Fermions

- b. Photons
- d. Protons

## $\Big(\underline{\text{Descriptive}}\,\Big)$

Time: 2 hrs. 30 mins.

Marks: 50

## [ Answer question no.1 & any four (4) from the rest ]

| 1. | Derive Maxwell-Boltzmann velocity distribution function and draw the graph showing the dependence on temperature.                                                                     | 6+4=10 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2. | Explain the theory of paramagnetism using classical statistics.                                                                                                                       | 10     |
| 3. | Find out the energy and density fluctuation in grand canonical ensemble.                                                                                                              | 4+6=10 |
| 4. | Discuss the Simple Harmonic Oscillator in classical statistics along with thermodynamic properties.                                                                                   | 8+2=10 |
| 5. | <ul><li>a. What is Bose-Einstein condensation?</li><li>b. Calculate the fraction of Bosons that will occupy the ground state in a condensate with graphical representation.</li></ul> | 3+7=10 |
| 6. | <ul><li>a. Explain the need for quantum statistics.</li><li>b. Mention some features of Bose-Einstein statistics.</li></ul>                                                           | 5+5=10 |
| 7. | <ul><li>a. What is a degenerate Fermi gas?</li><li>b. Obtain an expression for energy distribution of free electrons from F.D. distribution law.</li></ul>                            | 3+7=10 |
| 8. | How does the Ising model explain ferromagnetic phase transition?                                                                                                                      | 10     |

== \*\*\* = =