REV-01 BMB/02/07

B.Sc. MICROBIOLOGY FOURTH SEMESTER (REPEAT) CHEMISTRY-II BMB-405

[USE OMR SHEET FOR OBJECTIVE PART] Full Marks: 70

Duration: 3 hrs.

Objective)

Marks: 20 Time: 30 mins.

Choose the correct answer from the following:

1. Keesom interaction is: a. Dipole-dipole interaction b. Dipole-induced dipole interaction

- - c. Induced dipole-induced dipole
 - interaction
- 2. Solubility of ethanol is highest in:
 - a. Propanol
 - c. Octane
 - a. Shows relative stability of different
 - c. Both a and b

b. Propane

d. None of the above

- d. Oil
- 3. Which is true about Latimer diagram?
 - oxidation states
- d. None of the above
- 4. Which statement is not true about hydrogen bond?
 - a. It is special type of dipole dipole interaction
 - c. It increases boiling point of polar protic compounds
- b. It forms between hydrogen and highly electropositive elements

b. Shows standard reduction potential connecting various oxidation states of

d. None of the above

an element

- 5. Transition metal complexes are colored due to:
 - a. Variable oxidation state
 - c. Splitting of d orbitals and transition of electrons between two different
 - energy states

- b. Presence of partially filled d orbital
- d. None of the above
- Boiling point of a compound is related to:
 - a. Vanderwall's force
 - c. Both a and b

- b. Hydrogen bond d. None of the above
- 7. Find the paramagnetic species.
 - a. CNc. CO

- b. NO+
- d. O2-
- 8. Find the diamagnetic species.
 - a. H₂

- b. H₂-
- c. He2*

2023/06

 $1 \times 20 = 20$

9.	The hybridization of XeF ₄ is: a. sp ³ d	b. sp ³		
	c. sp^3d^2	d. sp ²		
10.	Find the molecule having the highest bond order.			
	a. O ₂ +	b. O ₂ -		
	c. O ₂ ² -	d. O ₂		
11.	The formal charge of O ₃ molecule is:			
	a1,+1,-1	b1,0,+1		
	c. +1,+1,-1	d. None of the above		
12.	Which of the following species are isoelctro	nic?		
	a. N ₂ , CO, NO	b. O ₂ , N ₂ , CO		
	c. O ₂ , NO, CO ₂	d. All of the above		
12				
13.	The geometry of BF ₃ molecule is: a. Trigonal planar	b. Tetrahedral		
	c. Square planar	d. All of the above		
		a. All of the above		
14.	[Ni(CN) ₄] ²⁻ has which geometry?			
	a. Square planer	b. Trigonal bipyramid		
	c. Tetrahedral	d. None of the above		
15.	Fe atom in [Fe(CN) ₆] ⁴⁻ is:			
	a. dsp ² hybridized	 b. d²sp³ hybridized 		
	c. sp ³ d ² hybridized	d. None of the above		
16.	$[Co(NH_3)_6][Cr(CN)_6]$ and $[Co(CN)_6][Cr(NH_3)_6]$ refers to:			
	a. Polymerization Isomerism	b. Coordination Isomerism		
	c. Linkage Isomerism	d. None of the above		
17	Trans isomers are outles live			
17.	Trans-isomers are optically: a. Active	b. Inactive		
	c. Opaque	d. None of the above		
18.	[Fe(CN) ₆] ⁴⁻ is a low spin complex, because			
	a. Strong field ligand	b. Weak field ligand		
	c. Ferromangetic species	d. None of the above		
19.	Square planer complex is a s special case o	f:		
	a. Tetragonal bipyramidal complex	b. Tetrahedral complex		
	c. Octahedral complex	d. None of the above		
20.	Greater the CFSE of the complex,			
	a. Smaller is the stability of the complex	b. Greater is the stability of the comple		
	c. It becomes optically active	d. None of the above		

USTM/COE/R-01

H

(Descriptive)			
Tir	ne: 2 hr. 30 mins.	Marks: 50	
[Answer question no.1 & any four (4) from the rest]			
1.	 a) Discuss all types of Vander wall's forces seen in compounds showing examples. 	4	
	 b) Write the postulates of VSEPR theory. c) Name the following according to IUPAC system. (i) K₄[Fe(CN)₆] (ii) K[Ag(CN)₂] (iii) [Cu(NH₃)₄]SO₄ 	3 3	
2.	a) Explain the significance and utility of Latimer diagram of an element in different oxidation states.b) Explain the origin of color observed in transition metal compounds, considering the crystal field theory.	5+5=10	
3.	 a) How do intermolecular forces affect solubility? b) Why propane has boiling point of -42 °C but ethanol has 78 °C? c) Discuss how shape of molecules and number of electrons held by molecules affect Vander wall's force. 	3+3+4=10	
4.	 a) Explain the trend of boiling points of H₂O, H₂S, H₂Se and H₂Te. b) Calculate the formal charge of NO₂ molecule. c) When does strong distortion occur in an octahedral complex? What are its impacts? 	3 3 4	
5.	 a) Explain the molecular orbital energy level diagram of O₂ and O₂ ions and calculate bond order, magnetic moment for each ion. b) Explain the structure of SF₆ molecule using hybridisation. 	6+4=10	
6.	 a) Why He₂ molecule does not exist? b) Define hydrogen bonding? Why O -nitro phenol is more volatile than p-nitro phenol? c) Calculate the bond order of N₂⁺ ion using molecular orbital energy level diagram. d) Mention the hybridization of the following molecules/ions. (i) CO₂ (ii) CH₃⁺ (iii) CH₃⁻ (iv) PCl₅ 	2+3+3+2=10	
7.	a) Why does Cu (II) form Square planer complexes rather than tetrahedral complexes?b) Give a brief account of the splitting of d-orbitals in an octahedral field.	4+6=10	
8.	 a) Draw the possible geometrical isomers of [Co(en)₂Cl₂]. Which one of them is optically active and why? b) Give a brief account of the optical activity of Trioxalato Chromate (III) ion. 	6+4=10	

3

USTM/COE/R-01