REV-01 BMB/02/07 ## **B.Sc. MICROBIOLOGY** FOURTH SEMESTER (REPEAT) CHEMISTRY-II BMB-405 [USE OMR SHEET FOR OBJECTIVE PART] Full Marks: 70 Duration: 3 hrs. Objective) Marks: 20 Time: 30 mins. ## Choose the correct answer from the following: 1. Keesom interaction is: a. Dipole-dipole interaction b. Dipole-induced dipole interaction - - c. Induced dipole-induced dipole - interaction - 2. Solubility of ethanol is highest in: - a. Propanol - c. Octane - a. Shows relative stability of different - c. Both a and b b. Propane d. None of the above - d. Oil - 3. Which is true about Latimer diagram? - oxidation states - d. None of the above - 4. Which statement is not true about hydrogen bond? - a. It is special type of dipole dipole interaction - c. It increases boiling point of polar protic compounds - b. It forms between hydrogen and highly electropositive elements b. Shows standard reduction potential connecting various oxidation states of d. None of the above an element - 5. Transition metal complexes are colored due to: - a. Variable oxidation state - c. Splitting of d orbitals and transition of electrons between two different - energy states - b. Presence of partially filled d orbital - d. None of the above - Boiling point of a compound is related to: - a. Vanderwall's force - c. Both a and b - b. Hydrogen bond d. None of the above - 7. Find the paramagnetic species. - a. CNc. CO - b. NO+ - d. O2- - 8. Find the diamagnetic species. - a. H₂ - b. H₂- - c. He2* 2023/06 $1 \times 20 = 20$ | 9. | The hybridization of XeF ₄ is:
a. sp ³ d | b. sp ³ | | | |-----|--|---|--|--| | | c. sp^3d^2 | d. sp ² | | | | 10. | Find the molecule having the highest bond order. | | | | | | a. O ₂ + | b. O ₂ - | | | | | c. O ₂ ² - | d. O ₂ | | | | 11. | The formal charge of O ₃ molecule is: | | | | | | a1,+1,-1 | b1,0,+1 | | | | | c. +1,+1,-1 | d. None of the above | | | | 12. | Which of the following species are isoelctro | nic? | | | | | a. N ₂ , CO, NO | b. O ₂ , N ₂ , CO | | | | | c. O ₂ , NO, CO ₂ | d. All of the above | | | | 12 | | | | | | 13. | The geometry of BF ₃ molecule is:
a. Trigonal planar | b. Tetrahedral | | | | | c. Square planar | d. All of the above | | | | | | a. All of the above | | | | 14. | [Ni(CN) ₄] ²⁻ has which geometry? | | | | | | a. Square planer | b. Trigonal bipyramid | | | | | c. Tetrahedral | d. None of the above | | | | 15. | Fe atom in [Fe(CN) ₆] ⁴⁻ is: | | | | | | a. dsp ² hybridized | b. d²sp³ hybridized | | | | | c. sp ³ d ² hybridized | d. None of the above | | | | 16. | $[Co(NH_3)_6][Cr(CN)_6]$ and $[Co(CN)_6][Cr(NH_3)_6]$ refers to: | | | | | | a. Polymerization Isomerism | b. Coordination Isomerism | | | | | c. Linkage Isomerism | d. None of the above | | | | 17 | Trans isomers are outles live | | | | | 17. | Trans-isomers are optically: a. Active | b. Inactive | | | | | c. Opaque | d. None of the above | | | | | | | | | | 18. | [Fe(CN) ₆] ⁴⁻ is a low spin complex, because | | | | | | a. Strong field ligand | b. Weak field ligand | | | | | c. Ferromangetic species | d. None of the above | | | | 19. | Square planer complex is a s special case o | f: | | | | | a. Tetragonal bipyramidal complex | b. Tetrahedral complex | | | | | c. Octahedral complex | d. None of the above | | | | 20. | Greater the CFSE of the complex, | | | | | | a. Smaller is the stability of the complex | b. Greater is the stability of the comple | | | | | c. It becomes optically active | d. None of the above | | | USTM/COE/R-01 H | (Descriptive) | | | | |---|--|------------|--| | Tir | ne: 2 hr. 30 mins. | Marks: 50 | | | [Answer question no.1 & any four (4) from the rest] | | | | | 1. | a) Discuss all types of Vander wall's forces seen in compounds
showing examples. | 4 | | | | b) Write the postulates of VSEPR theory. c) Name the following according to IUPAC system. (i) K₄[Fe(CN)₆] (ii) K[Ag(CN)₂] (iii) [Cu(NH₃)₄]SO₄ | 3 3 | | | 2. | a) Explain the significance and utility of Latimer diagram of an element in different oxidation states.b) Explain the origin of color observed in transition metal compounds, considering the crystal field theory. | 5+5=10 | | | 3. | a) How do intermolecular forces affect solubility? b) Why propane has boiling point of -42 °C but ethanol has 78 °C? c) Discuss how shape of molecules and number of electrons held by molecules affect Vander wall's force. | 3+3+4=10 | | | 4. | a) Explain the trend of boiling points of H₂O, H₂S, H₂Se and H₂Te. b) Calculate the formal charge of NO₂ molecule. c) When does strong distortion occur in an octahedral complex? What are its impacts? | 3 3 4 | | | 5. | a) Explain the molecular orbital energy level diagram of O₂ and O₂ ions and calculate bond order, magnetic moment for each ion. b) Explain the structure of SF₆ molecule using hybridisation. | 6+4=10 | | | 6. | a) Why He₂ molecule does not exist? b) Define hydrogen bonding? Why O -nitro phenol is more volatile than p-nitro phenol? c) Calculate the bond order of N₂⁺ ion using molecular orbital energy level diagram. d) Mention the hybridization of the following molecules/ions. (i) CO₂ (ii) CH₃⁺ (iii) CH₃⁻ (iv) PCl₅ | 2+3+3+2=10 | | | 7. | a) Why does Cu (II) form Square planer complexes rather than tetrahedral complexes?b) Give a brief account of the splitting of d-orbitals in an octahedral field. | 4+6=10 | | | 8. | a) Draw the possible geometrical isomers of [Co(en)₂Cl₂]. Which one of them is optically active and why? b) Give a brief account of the optical activity of Trioxalato Chromate (III) ion. | 6+4=10 | | 3 USTM/COE/R-01