REV-01 MSM/24/29

> M.Sc. MATHEMATICS SECOND SEMESTER ABSTRACT ALGEBRA II MSM - 203[USE OMR FOR OBJECTIVE PART]

2023/06

SET

Full Marks: 35

Marks: 10 1×10=10

Duration: 1:30 hrs.

Objective

Time: 15 mins.

Choose the correct answer from the following:

1. Which of the following is/are true?

The unit group U(n) is a nilpotent

The unit group U(n) is not a nilpotent

The unit group U(n) is a nilpotent group iff n is prime

The unit group U(n) is a nilpotent group for some n

2. Let p, q be distinct primes. Then

a. $\frac{2}{n^2a^2}$ has exactly 3 distinct ideals.

c. $\frac{\mathbb{Z}}{p^2q\mathbb{Z}}$ has exactly 2 distinct prime

b. $\frac{z}{p^2qz}$ has exactly 3 distinct prime

d. $\frac{2}{n^2a^2}$ has unique maximal ideals.

3. Which of the following is/are unique factorization domain:

a. $\mathbb{Z}_p[x]$, where p is prime

b. $\mathbb{Z}[i]$

c. $\mathbb{Z}[x]$

d. All the above

4. Which of the following is/are true

 S_n , $n \ge 5$ is a solvable group but not Nilpotent

 S_n , $n \ge 5$ is both solvable and Nilpotent group

b. $S_n, n \ge 5$ is a Nilpotent group but not

 S_n , $n \ge 5$ is neither solvable nor Nilpotent group

5. Let *F* be a field with non-zero characteristic, then

a. F has a subfield isomorphic to \mathbb{Q} .

F has a subfield isomorphic to

either \mathbb{Z}_p or \mathbb{Q} .

F has a subfield isomorphic to \mathbb{Z}_n for prime p.

d. None of these

6. Which of the following is/are true

a. 7 is prime in the ring $\mathbb{Z}[\sqrt{5}]$.

c. 7 is irreducible in the ring $\mathbb{Z}[\sqrt{5}]$.

b. 7 is unit in the ring $\mathbb{Z}[\sqrt{5}]$.

d. All the above

7.	Given a polynomial $f(x) = a_0 + a_1 x + \dots + a_n x^n$, where a_i 's arcontent of $f(x)$ is	e integers,	then
	content of I(x) is		

content of f(x) is a. $gcd(a_0, a_1, \dots, a_n)$

b. $lcm(a_0, a_1, \dots, a_n)$

c. Mean of a_0, a_1, \dots, a_n

d. None of these

8. $\frac{\mathbb{Z}_2[x]}{\langle x^3 + x^2 + 1 \rangle}$ is a. A field having 8 elements c. An infinite field

b. A field having 9 elements

d. Not a field

9. Which of the following statement is/are not necessarily true?

a. A group of order 4 is solvable

b. A group of order 25 is solvable.

c. A group of order 21 is solvable.

d. All the above.

10. If $\mathbb{Z}[i]$ is the ring of Gaussian integers, the quotient $\frac{\mathbb{Z}[i]}{\langle 3-i \rangle}$ is isomorphic to a. \mathbb{Z} b. $\frac{\mathbb{Z}}{3\mathbb{Z}}$

 $c. \frac{\mathbb{Z}}{4\mathbb{Z}}$

 $\frac{\mathbb{Z}}{10\mathbb{Z}}$

-- --- --

Descriptive

Time: 1 hr. 15 mins. Marks: 25

[Answer question no.1 & any two (2) from the rest]

- 3+2=5 a. $f(x) = \frac{3}{7}x^4 - \frac{2}{7}x^2 + \frac{9}{35}x + \frac{3}{5}$ is irreducible over \mathbb{Q} . b. $f(x) = 3x^5 + 15x^4 - 20x^3 + 10x + 20$ is irreducible over \mathbb{Q} . 4+4+2 a. Find all the composition series of \mathbb{Z}_{30} and show they are equivalent. =10b. Show that the quaternion group Q_8 is a Nilpotent group. Is Q_8 solvable? c. Prove that - Any non abelian simple group is not solvable. a. Prove that $\langle 2 + 2i \rangle$ is not a prime ideal of $\mathbb{Z}[i]$. 4+3+3 b. Using Fundamental theorem of ring homomorphism show that $\frac{2[x]}{cx^2}$ =10is not a field. c. Determine all ring homomorphisms from \mathbb{Z}_{30} to \mathbb{Z}_{20} . 4. a. Construct a field of order 27. 3+4+3 =10b. In $\mathbb{Z}[\sqrt{-5}]$, prove that $1 + 3\sqrt{-5}$ is irreducible but not prime. c. In $\mathbb{Z}[\sqrt{-6}]$, show that 10 does not factor uniquely as a product of irreducible a. Prove that the group $(\mathbb{Z}, +)$ has no composition series. 3+3+4 =10b. Prove that - For any prime *p*, the *p*th cyclotomic polynomial $x^{p-1} + x^{p-2} + \dots + x + 1$
 - c. Let d be a function from the nonzero elements of \mathbb{Z} to the nonnegative integers. Show that The ring \mathbb{Z} is a Euclidean domain with d(a) = |a|. Is \mathbb{Z} a UFD (unique factorization domain)? Justify your answer.

is irreducible over Q.

== *** = =

[3]

HSTM/COE/R-01