SET В

M.Sc. MATHEMATICS THIRD SEMESTER **FUNCTIONAL ANALYSIS** MSM - 302

[USE OMR SHEET FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

(Objective)

Time: 30 min.

Marks: 20

Choose the correct answer from the following:

1X20 = 20

- In any normed space $(V, \|\cdot\|)$ with $u, v \in V$ b. |||u|| - ||v||| > ||u - v|||||u|| - ||v||| < ||u - v|| $|||u|| - ||v|| \le ||u - v||$ c. $|||u|| - ||v||| \ge ||u - v||$ d.
- The true statement of the following is
 - There are norms on a finite dimensional norm space which are not equivalent to each other.
 - Convergence or divergence of a sequence in a finite dimensional normed space depends on particular norm defined on the space.
 - c. There is a finite dimensional normed space which is not a Banach space.
 - d. A finite dimensional subspace of a normed space is closed.
- Consider $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i = 1, 2, \dots, n\}$. For any $x = (x_1, x_2, \dots, x_n)$ define $\|\cdot\|_p$ by $\|x\|_p = \{\sum_{i=1}^n |x_i|^p\}_{\overline{p}}$. Then $\|\cdot\|_p$ is a norm on \mathbb{R}^n if b.
 - 1
- $1 \le p < \infty$
- $0 \le p < \infty$ c.
- $-\infty$
- **4.** The closure \overline{Y} of a linear subspace Y of a normed space $(V, \|\cdot\|)$ is
 - a. Linearly closed

- b. Linearly not a closed subspace
- c. Neither (a) nor (b) is true
- d. None of these
- 5. A proper subspace of a normed space has
 - a. No any interior point
- b. At least one interior point
- c. At most one interior point
- d. Many interior point
- In any inner product space X over a complex field, for any $x, y \in X$

[1]

- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle x, y \rangle = \overline{\langle x, y \rangle}$
- $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- d. None of these
- For any non-empty subset A of an inner product space X
 - $A^{\perp} \subset \overline{A^{\perp}}$ $A^{\perp} = \overline{A^{\perp}}$
- $A^{\perp} \supset \overline{A^{\perp}}$
- d. None of these
- 8. In an inner product space X over a complex field
 - $<\alpha x, y> = \bar{\alpha} < x, y>$ a.
- b. $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$
- $\langle x, \alpha y \rangle = \bar{\alpha} \langle x, y \rangle$ c.
- d. None of these
- 9. Let $1 \le p < q < \infty$ and $l^p \& l^q$ have usual meaning. Then
 - 1p ⊂ 19
- lp > 19
- c. Both (a) and (b) are true
- d. Both (a) and (b) are false

- 10. Any two n- dimensional normed spaces are:
 - a. Algebraically non isomorphic
- b. Topologically non-isomorphic
- c. Topologically isomorphic
- 11. Consider $l^p=\{z=\{z_n\}_{n=1}^\infty,\ z_n\in\mathbb{C}\}$ for $1\leq p<\infty$. Define $\|z\|_p=\{\sum_{n=1}^\infty |z_n|^p\}^{1/p}$. Then $\|\cdot\|_p$ will be a norm on l^p if
 - $\sum_{\substack{n=1\\\infty}}^{\infty}|z_n|^p<\infty$
- $\sum_{n=1}^{\infty} |z_n|^p < 0$
- c. $\sum_{n=0}^{\infty} |z_n|^p \le 0$
- d. None of these

d. None of these

d. None of the these

- **12.** If $A \neq \phi$ is a subset of an inner product space *X*, then
 - a. $A^{\perp} \subset A^{\perp \perp \perp}$
- b. $A^{\perp} = A^{\perp \perp \perp}$
- $A^{\perp} \supset A^{\perp \perp \perp}$
- 13. Which of the following statements is false:a. Linear operator on a finite dimensional normed space is continuous.
 - b. Linear operator on a finite dimensional normed space is bounded.
 - c. Linear operator on a finite dimensional normed space is both continuous and bounded.
 - d. None of the these
- **14.** If *B* and *B'* are Banach spaces and $T: B \to B'$ is a continuous linear operator then
 - a. T is an open mapping
- b. T is not an open mapping
- c. Both (a) and (b) are doubtful
- d. None of the above is true
- 15. Two normed spaces X and Y are said to be topologically isomorphic if there is a mapping $T: X \to Y$ such that
 - a. *T* is linear and *T* is not a homeomorphism
- b. *T* is a homeomorphism and *T* is not linear
- c. T is both linear and a homeomorphism
- d. *T* is neither linear nor a homeomorphism
- 16. Which of the following statements is false?
 - If c denotes the Banach space of all convergent sequences in $\mathbb R$ or $\mathbb C$ and c_0 denotes
 - a. the Banach space of all convergent sequences converging to 0, then c_0 is not a closed subspace of c.
 - b. If *Y* be a complete subspace of a normed space *X*, then *Y* is closed in *X*.
 - c. If *Y* be a complete subspace of a Banach space *X* then *Y* is also a Banach space.
 - d. All of the above statement are true.
- 17. Two normed spaces X and Y over the same field will be isometric if there is a linear operator $T: X \to Y$ such that
 - a. $||T(x)||_Y > ||x||_X$, $\forall x \in X$
- b. $||T(x)||_Y < ||x||_X, \forall x \in X$
- c. $||T(x)||_Y = ||x||_X$, $\forall x \in X$
- d. $||T(x)||_Y \neq ||x||_X$, $\forall x \in X$

18. Every convergent sequence in a normed space is a Cauchy sequence, but every Cauchy sequence in it may not be a convergent sequence. The statement is

a. True

b. False

c. Not decidable

d. None of these

19. If *T* is a linear operator from a normed space *X* to a normed space *Y* over the same field K then which of the following statements is not true?

a. *T* is continuous if *T* is bounded

b. *T* is bounded if *T* is continuous

d. None of the above is true.

- T is continuous if and only if T is bounded
- 20. If *T* be a bounded linear operator from a normed space *X* into a normed space *Y* over the same field K then the norm of T is given by

a. $||T|| = \sup \{||T(x)||_Y : x \in X, ||x||_X\}$ > 1}

b. $||T|| = \sup \{||T(x)||_Y : x \in X, ||x||_X \ge 1\}$

c. $\|T\| = \sup \{ \|T(x)\|_Y \colon x \in X, \|x\|_X \le 1 \}$ d. None of these

Descriptive

Marks:50 Time: 2 hrs. 30 mins.

[Answer question no.1 & any four (4) from the rest]

- **1.** a. Define a normed linear space $(X, \|\cdot\|)$. **b.** Show that in a normed linear space $(X, \|\cdot\|)$, $|||x|| - ||y||| \le ||x - y||, \forall x, y \in X.$ **c.** Using result (b) prove that $\|\cdot\|: X \to \mathbb{R}$ is a continuous function. 2. a. Consider \mathbb{R}^n the linear space of all *n*-tuples of real numbers. For 5+5=10 any $f \in \mathbb{R}^n$, $f = (f(1), f(2), \dots, f(n))$, define $||f|| = (\sum_{i=1}^n |f(n)|^2)^{\frac{1}{2}}$. Show that \mathbb{R}^n is a normed space with $\|\cdot\|$ as defined. b. Show that the normed space as defined in (a) is a Banach space. 5+5=10 3. a. Let Y be a subspace of a normed space X. If Y is complete then prove that it is also closed in X.
 - **b.** Let *X* be a normed space over a field K ($K = \mathbb{R}$ or \mathbb{C}) and let *M* be a closed subspace of X. Prove that quotient space X/M is a normed space under a suitably defined norm in X/M.
- 2+4+4 **4.** a. When is a linear operator $T:(X,\|\cdot\|_X) \to (Y,\|\cdot\|_Y)$ said to be bounded.
 - **b.** Prove that a linear operator $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is continuous if and only if T is bounded.
 - **c.** Define the norm of a bounded operator $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ and hence prove that the space of all bounded operators from $(X, \|\cdot\|_X)$ into $(Y, \|\cdot\|_Y)$ is also a normed space, the underlying field being K(= \mathbb{R} or \mathbb{C}) for all normed spaces under consideration.
- 5. a. When are two normed spaces *X* and *Y* said to be topologically 2+8=10 isomorphic.

[4]

USTM/COF/R-01

2+4+4

b. Let X and Y be normed spaces over the same field $K (= \mathbb{R} \text{ or } \mathbb{C})$ and let $T: X \to Y$ be an onto linear operator. Prove that T is a topological isomorphism if and only if there exist $K_1, K_2 > 0$ such that

$$K_1\parallel x\parallel_X\leq\parallel T(x)\parallel_Y\leq K_2\parallel x\parallel_X,\ \forall x\in X$$

6. a. Any two *n*-dimensional normed spaces over the same field are topologically isomorphic. Justify the statement with a proof.

7+3=10

- b. Use (a) to show that all norms on a finite dimensional normed space are equivalent.
- 7. a. State Hahn Banach Theorem.

1+6+3

- b. Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. If x_0 is a vector not in M, and if $M_0 = M + [x_0]$ is the linear subspace spanned by M and x_0 then show that f can be extended to a functional f_0 defined on M_0 such that $\|f_0\| = \|f\|$.
- c. Explain the concept of an inner product space.
- 8. a. If x and y are any two vectors in an inner product space X then establish the Schwarz inequality $| \langle x, y \rangle | \leq ||x||||y||$.

5+5=10

b. Let M be a closed subspace of a Hilbert space H. Then show that $H = M \oplus M^{\perp}$, where M^{\perp} is the orthogonal set of M.

== *** = =