M.Sc. MATHEMATICS SECOND SEMESTER **TOPOLOGY** MSM-201

Full Marks: 70 Duration: 3 hrs.

PART-A: Objective

Time: 20 min. Marks: 20

Choose the correct answer from the following:

1X20 = 20

Let (X, \mathcal{T}_d) be a discrete topological space and $A \subseteq X$. Then

a. $A \subset \bar{A}$

 $c. A = \bar{A}$

d. None of these

b. $\bar{A} \subset A$

2. Let $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ and $\#(\mathbb{N})$ denote the cardinality of \mathbb{N} . Then

a. $\#(\mathbb{N} \times \mathbb{N}) > \#(\mathbb{N})$

c. $\#(\mathbb{N} \times \mathbb{N}) = \#(\mathbb{N})$

b. $\#(\mathbb{N} \times \mathbb{N}) < \#(\mathbb{N})$

d. None of these

3. Which of the following statements is/ are False?

a. The finite product of connected space is connected.

 b. Discrete topological space is not a connected space.

c. The continuous image of a connected space is connected.

 d. Indiscrete topological space is not a connected space.

4. Let (X_*T) be a topological space. Then X is a T_3 -space if

a. X is a regular space

b. X is a normal space

c. X is a regular and T_1 -space

d. X is a normal and T_1 -space

Let X_i $(i = 1, 2, \dots, n)$ be a family of connected spaces. Then the product $\prod_{i=1}^n X_i$ is

a. Connected

b. Not connected

c. Connected if $\bigcap_{i=1}^n X_i = \phi$

d. Connected if $\bigcap_{i=1}^n X_i \neq \phi$

In a T_1 topological space X

a. No singleton set is closed

c. Each singleton set is both closed and open

b. Every singleton set is closed

d. None of these

Let X be a discrete topological space. Which of the following sets is/are dense on X?

a. X

b. A non-empty subset of **x**

USTM/COE/R-01

c. *X* is a compact space if *X* is a finite set. **d.** *X* is a compact space if *X* is an infinite set.

a. *X* is a compact space.

14. Let X be a connected topological space and Y be a topological space. If $f: X \to Y$ is a homeomorphism. Then

b. *X* is not a compact space.

- a. f(X) = Y is connected
- c. f(X) = Y is not connected

- b. $f(X) \neq Y$, f(X) is connected
- d. $f(X) \neq Y$, f(X) is not connected

- 15. Every metric space X is
 - a. a T_1 space
 - c. Both a T_1 and a T_2 space

- b. a T2 space
- d. Neither a T_1 space nor a T_2 space
- 16. Consider the following statements:

P: The usual topology on R is not locally compact.

Q: Any discrete topological space is locally compact.

- a. P False, Q True
- c. Both are True

- b. P True, Q False
- d. Both are False
- 17. A topological space (X, \mathcal{T}) is second countable if
 - **a.** There is a countable number of open sets in *X*.
 - c. There is a countable local base at every point of *X*.
- **b.** There is a base for T having a countable number of open sets.
- d. None of these
- 18. Which of the following is/are true?
 - a. $[-1,1] \times [0,1]$ is compact but not locally compact.
 - c. $[-1,1] \times [0,1]$ is both compact and locally compact.
- b. $[-1,1] \times [0,1]$ is locally compact but not compact.
- d. $[-1,1] \times [0,1]$ is neither compact nor locally compact.
- 19. Let $A = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \le 1\}$ and $B = \{(2,2)\}$. Let $f: \mathbb{R} \times \mathbb{R} \to [0,1]$ as

$$f(x) = \begin{cases} 1, & \forall x \in A \\ 0, & \forall x \in B \end{cases}$$

Then f is

- a. Continuous function
- c. Information is insufficient
- b. not a continuous function
- d. None of these
- 20. The topological space R with discrete topology D is
 - a. First countable
 - c. Both first and second countable
- b. Second countable
- d. Neither first countable nor second countable.

(PART-B : Descriptive)

Time: 2 HRS 40 MINS Marks: 50 [Answer question no.(1) & any four (4) from the rest] $2 \times 5 = 10$ 1. Prove or disprove the following statements: The set A of all algebraic numbers is denumerable. (A real number r is defined to be an algebraic number if r satisfies polynomial equation of $a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m = 0$, where a_0, a_1, \dots, a_m are integers.) (b) Co-finite topology on a finite set x is the same as the discrete topology on it. (c) The set \mathbb{R} of all real numbers with usual topology \mathcal{U} is second countable. (d) Every T_2 -space is also a T_1 -space. The topological space \mathbb{R} with usual topology \mathcal{U} is (e) separable. a. Let A, B be the subspace topologies of the topological spaces X and 3+1+4+2=10 Y respectiviely. Prove that the product topology and subspace topology on A x B are same. Is the result true for ordered topology? b. Let R denote the usual topology and R, denotes the lower limit topology on the real line **R**. Let $f: \mathbb{R} \to \mathbb{R}_f$ be defined as f(x) = x, $\forall x \in \mathbb{R}$. Prove or disprove that f is a homeomorphism. c. Let Y = (0,1] be a subspace of the usual topology on \mathbb{R} . Find the closure of the set $A = (0, \frac{1}{2})$ in Y. a. Let A be any subset of a second countable space X. If G is an open 5+5=10cover of A then prove that G is reducible to a countable cover. **b.** Prove that - A separable metric space is second countable. **4.** Let (X,T) be a topological space. Define a relation **R** on X as follows: 4+6=10

 $R = \{(x,y) \in X \times X: x, y \in E_{xy}\}$, where E_{xy} is a connected subset of X.

(i) Prove that - R is an equivalence relation.

- b. Let (X,T) be a topological space and $\alpha \notin X$. Define $X^+ = X \cup \{\alpha\}$ and $T^+ = \{G \subset X^+ : \alpha \in G \& X^+ G \text{ is closed and compact in } X\}$. Show that (X^+,T^+) is a topological space.
- 5. **a.** Prove that a topological space X is normal if and only if for every closed set F and every open set H containing F there exists an open set G such that $F \subset G \subset \bar{G} \subset H$.

5+5=10

- b. Let \mathcal{D} denote the set of all dyadic fraction in [0,1]. Prove that $\overline{\mathcal{D}}=[0,1].$
- 6. Check the connectedness of the following topological space (Explain):

 $2 \times 5 = 10$

- (i) Discrete topology on X.
- (ii) Finite-complement topology on an infinite set X.
- (iii) The real line with lower limit topology.
- (iv) A topology $T = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}\} \text{ on } X = \{a, b, c, d\}.$
- (v) A topology $T = \{\phi, X, \{a\}, \{b, c\}\}\)$ on $X = \{a, b, c\}$.
- 7. **a.** Consider the topological space (X,T), where $X = \{a,b,c,d,e\}$ and $T = \{\phi, X, \{a\}, \{b,c\}, \{a,b,c\}\}$. Let $A = \{a,b\}$. Find \bar{A} the closure of A in X. Is A dense in X? Is X a separable topological space?

3+1+1+3+1+1=

- b. Find the topology \mathcal{T} on $X = \{a, b, c, d\}$ generated by the class \mathcal{C} of subsets of X given by $\mathcal{C} = \{\{a\}, \{b\}\}$. Mention the subbase and base for the topology \mathcal{T} on X.
- 8. a. Prove that The continuous image of a compact space is compact.b. Prove that A closed subspace of a compact space is compact.

4+4+2=10

c. Construct an open cover on \mathbb{R}^2 with usual topology.

== *** ==