a. bounded

a. -1 and 0

c. Does not exist

Consider the following statements:

c. bounded above but not bounded below

7. The infimum and supremum of the set $\{-1, -\frac{1}{2}, -\frac{1}{3}, \cdots\}$ are respectively

P: The set

R of real numbers is the neighbourhood of each of its points.

Q: The set Q of rational numbers is not the neighbourhood of each of its points. USTM/COE/R-01

M.Sc. MATHEMATICS FOURTH SEMESTER GENERAL MATHEMATICS-II MSM-406

MSM-406 Full Marks: 70 Duration: 3 hrs. [PART-A: Objective] Marks: 20 Time: 20 min. 1X20 = 20Choose the correct answer from the following: 1. Which of the following is not a group? b. (Z, +) a. (R. ·) d. None of these c. (R,+) 2. Which of the following is true? a. Identity element of a group is always b. Inverse element of a group is always unique. unique. c. Both (a) are (b) d. None of these 3. Which of the following is an Abelian Group a. The group of all 2×2 invertible b. The group $\{1, -1, i, -i\}$ w.r.t matrix w.r.t matrix multiplication. multiplication. c. Both (a) and (b). d. None of these 4. Let G be a group and H be a subgroup of G. If order of H is 6, then order of G can be a. 2 b. 12 c. 15 d. None of these. 5. Let $G = \{0,1,2\}$. For $a,b \in G$, a binary operation '*' define on G as a * b = |a-b|. The (G,*) is b. an Abelian group a. a group d. none of these c. not a group The set of natural number N is

b. bounded below but not bounded

above

d. not bounded

d. None of these

a. P true, Q false	b. P false, Q true
c. Both P and Q are true.	d. Both P and Q are false.
9. Which of the following is/are not open set?	
a. The set of real numbers, ℝ c. The null set Φ	b. The set of natural numbers, N d. None of these
10. Consider the following statements: P: Every finite set of numbers is bounded.	
Q: Any interval in the real line R is bounded a. P true, Q false	b. P false, Q true
c. Both P and Q are true.	d. Both P and Q are false.
11. Let G be the set of all 2×2 square matrices	. The identity element of $(G, +)$ is
a. 0	b. 1
c. Zero matrix	d. Unit matrix
12. Which of the following is/are open sets?	
a. [1, α)	b. (-α,0]
c. (0, 1)	d. [0, 1]
13. If $f(x) = x^2 \sin \frac{1}{x}$, $x \ne 0$, then the value of the function is continuous at $x = 0$ is	the function $f(x)$ at $x = 0$, so that the
a. 0	b1
c. 1	d. None of these
14. The set of points where the function f give	by $f(x) = 2x - 1 \sin x$ is differentiable
is a. R	b. $\mathbb{R} = \left\{\frac{1}{2}\right\}$
c. (0.∞)	d. None of these
15. The function $f(x) = \cot x$ is discontinuous	
a. $\{x = n\pi, n \in \mathbb{Z}\}$	b. $\{x = 2n\pi, n \in \mathbb{Z}\}$
$c. \left\{ x = (2n+1)\frac{\pi}{2}, \ n \in \mathbb{Z} \right\}$	d. None of these
16. The function $f(x) = \frac{4-x^2}{3}$ is	
16. The function $f(x) = \frac{4-x^2}{4x-x^3}$ is a. Discontinuous at only one point at	b. Discontinuous at exactly two points
x = 0.	
c. Discontinuous at exactly three points	d. None of these
17. If $f(x) = \sqrt{25 - x^2}$, then $\lim_{x \to 2} \frac{f(x) - f(1)}{x - 1}$ is	s equal to
a. $\frac{1}{24}$	b. ½
24	5
c. −√24	$d.\frac{1}{\sqrt{24}}$
	(And

Consider function $f(x) = \begin{cases} x, 0 \le x \le 1 \\ 2 - x, 1 < x \le 2 \end{cases}$ 18.

- a. f is continuous at x = 1
- c. f is continuous at x = 0

b. f is not continuous at x = 1

d. f is not continuous at x = 0

19. Consider the following statement:

P: Every continuous function is differentiable.

Q: Every differentiable function is continuous.

a. P true, Q false

b. P false, Q true

c. Both P and Q are true

d. Both P and Q are false

20. Which of the following function is not differentiable?

b. $f(x) = \sin x$, $\forall x \in \mathbb{R}$

a. $f(x) = |x|, \forall x \in \mathbb{R}$ c. $f(x) = x^3 + 3, \forall x \in \mathbb{R}$

d. None of these

[PART-B : Descriptive]

Marks: 50 Time: 2 HRS 40 MINS

[Answer question no.(1) & any four (4) from the rest]

- 1. a. Show that the set $\{\pm 1..\pm i, \pm j, \pm k\}$, where $i^2=j^2=k^2=-1$ and 4+6=10 ij = -ji = k, jk = -kj = i, ki = -ik = j is a group w.r.t multiplication. Is this an Abelian group?
 - b. Find the derivative if
 - (i) $y = \sec^{-1} \frac{\sqrt{x}+1}{\sqrt{x}-1} + \sin^{-1} \frac{\sqrt{x}-1}{\sqrt{x}+1}$ (ii) $\sin x = \frac{2t}{1+t^2}, \cos y = \frac{1-t^2}{1+t^2}$
- 2. Find infimum and supremum of the following sets. Which of the them are bounded?
 - (i) $\left\{\frac{1}{n} : n \in \mathbb{N}\right\}$
 - (ii) $\{-2, -\frac{3}{2}, -\frac{4}{2}, -\frac{5}{4}, \cdots, -\frac{n+1}{n}, \cdots\}$
 - (iii) $\{x \in \mathbb{R} : 1 < x < 2\}$
 - (iv) {1,3,5,7,...}
 - (v) $\{1 + (-1)^n : n \in \mathbb{N}\}$
- 3+3+2=10 3. Find the derived set of the following sets:
 - $\{x:0\leq x\leq 1\}$
 - $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$ (ii)
 - Z, the set of integers (iii)
 - Q, the set of rational numbers (iv)
- 4. Let G be an Abelian group. Prove or disprove that the following sets are subgroup of G:
 - (i) $H = \{x^2 : x \in G\}$
 - (ii) $H = \{x \in G : x^2 = e\}$, where e is the identity of G.

5+5=10

2×5=10

- 5. Solve $\frac{dx}{a}$. $\int \frac{dx}{x^3 x^2 x + 1}$
 - b. $\int \frac{(x-1)e^x}{(x+1)^x} dx$
- 6. Find $\frac{dy}{dx}$

 - (b) $\sin x^{\cos x} + \cos \sqrt{1-x^2}$
- 7. Examine the continuity of the function $f(x) = \begin{cases} 3, & 0 \le x \le 1 \\ 4, & 1 < x < 3 \\ 5, & 3 \le x \le 10 \end{cases}$
- 8. Find the values of a and b if the function f(x) defined by $f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$ Is differentiable at x = 1.

- 2×5=10
 - 10