continuous at x = 0 and x = 1

8. a. Prove that:

$$\frac{\cos^2 A}{\cos A - \sin A} + \frac{\sin^2 A}{\sin A - \cos A} = \cos A + \sin A$$

b. What is value of Sin 30°, cos 60°, tan 90°

REV-00 MSM/08/13

M.Sc. MATHEMATICS **FOURTH SEMESTER GENERAL MATHEMATICS**

MSM-406 (MDC) (Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs. Full Marks: 70

PART-A: Objective

Time: 20 min. Marks: 20

Choose the correct answer from the following:

1x20 = 20

- 1. Which of the following is true?
 - a. Determinant of a unit matrix is 1.
 - **b.** If there are two identical rows or columns in a matrix, then determinant of the matrix is 1.
 - c. A diagonal matrix whose all the diagonal matrix are unity is called null matrix.
 - d. None of these.

3+7=10

6+2+2=10

- 2. A function $f: A \to A$ such that $f(x) = x, x \in A$ is called:
 - a. Algebraic function

b. Rational function

c. Identity function

- d. None of these
- 3. Which of the following is true for a set A?
 - a. $A \cup A = \emptyset$

b. $A \cap A = \emptyset$

 $c. A \cap A = A$

- d. None of these
- **4.** A function which is both one one and onto is called:
 - a. Injective function

b. Surjective function

c. Bijective function

- d. None of these
- 5. A relation R on a set A is called equivalence relation if it is:
 - a. Reflexive

b. Symmetric

c. Transitive

- d. All of the above
- 6. The minor of -1 in $\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$ is:
- b. -5
- c. 2
- d. -2
- 7. Which of the following is true for a matrix A?
 - **a.** $A^{-1} = \frac{adjA}{|A|}, |A| = 0$

c. $A^{-1} = adiA$

- b. $A^{-1} = \frac{|A|}{adjA}, |A| \neq 0$ d. $A^{-1} = \frac{adjA}{|A|}, |A| \neq 0$
- **8.** Let $A = \{0,1,2,3\}$. Consider the relation $R = \{(0,0),(1,1),(2,2),(3,3)\}$. Then R is:
 - a. Reflexive

b. Symmetric

c. Transitive

d. All of the above

- 9. Equation of X-axis is:
 - **a.** Y = 0c. Y = K

- b. X = 0 $\mathbf{d}.\ X = K$
- 10. Gradient form of a Straight line is:
 - a. Y = mx

 $\mathbf{b.}\ Y = mx + c$

c. Y = 0

d. Y = 0

11. If two lines of gradient m_1 and m_2 are parallel ,then:

a.
$$m_1 < m_2$$

b. $m_1 > m_2$

c.
$$m_1 = m_2$$

d. $m_1 \neq m_2$

12.
$$\frac{d}{dx}(x^n) = 0$$

a. x $b. x^2$ $c. x^3$

d. nx 11-1

13. $\int (x'')dx = ?$

a.
$$\frac{x^{n+1}}{n+1}$$

1.
$$\frac{x^{n+1}}{n}$$

 $\frac{d}{dx}(\log x) = ?$

d. x - 1

15. $\frac{d}{dx}(f(x) + g(x)) = ?$

a. $\frac{d}{dx} f(x) - \frac{d}{dx} g(x)$

b. $\frac{d}{dx} f(x) = \frac{d}{dx} g(x)$

c.
$$\frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

d. $\frac{d}{dx} f(x) > \frac{d}{dx} g(x)$

16. A function f(x) is continuous at a point a if:

 $x \to a \qquad f(x) > f(a)$

b. $\lim_{x \to a} f(x) \neq f(a)$ d. $\lim_{x \to a} f(x) < f(a)$

17. In lim f(x) = f(a)

 $x \rightarrow a$

a. X fixed point

c. a moving point

b. X moving point and α fixed point

d. none

18. $\int (\cos x) dx = ?$

a. $\sin x$ b. $\cos x$

c. tan x

 $\mathbf{d}.\cot x$

19. $\int (2) dx = ?$

b. -2

c.3x

d.2x

20. In the equation of a straight line y = mx + c, m is

a. slope

b. gradient

c. point

d. none of the above

PART-B: Descriptive

Time: 2 hrs. 40 min.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. Find the derivative of the following:

5+5=10

a)
$$\frac{d}{dx}$$
 (sin $x + x^2$)

b)
$$\frac{d}{dx} \left(\frac{1 - \cos x}{1 + \cos x} \right)$$

2. a. Define the following:

2+3+5=10

(i) Union of two sets (ii) Difference of two sets

b. Prove the following by using Venn diagram:

$$A \cup (B \cup C) = (A \cap B) \cup (A \cap C)$$

c. Define composition of functions. Prove that if *f* and *g* are one one functions, then *fog* is also one one function.

3. a. Find the determinant of the following:

4+6=10

(i)
$$\begin{vmatrix} 0 & -h & g \\ h & 0 & -f \\ -g & f & 0 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}$

b. Show that $\begin{vmatrix} 1+x & y & z \\ x & 1+y & z \\ x & x & 1+z \end{vmatrix} = 1+x+y+z.$

4. Find the limit of:

4+6=10

a.
$$\lim_{x \to a} \frac{x^3 - 8}{x^2 - 4}$$

b.
$$\lim_{x \to a} \frac{\sqrt{1+x} - \sqrt{1+x}}{x}$$

5. What is the distance of the point (a,b) from X-axis? Find the locus of the point which is equidistant from the point (1,1) and (-1,-1).

2+8=10

6. a. If $A = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 & 1 \\ 2 & 2 & -2 \\ 5 & 5 & 5 \end{pmatrix}$, then find AB and BA.

4+6=10

b. Find the inverse of the following matrix:

$$A = \begin{pmatrix} 4 & -5 & -11 \\ 1 & -3 & 1 \\ 2 & 3 & -7 \end{pmatrix}$$