M.Sc. CHEMISTRY FOURTH SEMESTER **PHYSICAL CHEMISTRY-IV** (CHEMICAL DYNAMICS & ELECTROCHEMISTRY) **MSC-402 C**

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs.

Time: 20 min.

	1 01	•
PART-	$\Delta \cdot (h)$	lective
Inn		CULIVE

Marks: 20

Full Marks: 70

Choose the correct answer from the following:

a. 2 b. 4 c. 6 d. 12	Symmetry	number for CI	H ₄ molecule is:	
	a. 2	b. 4	c. 6	d. 12

riammett equation is applicable for:		
a. Aliphatic substances	b.	Aromatic substances
c. Both aliphatic and aromatic substances	d.	None of the above

3. In cage effect, the number of collision per encounter is:

- a. Smaller than the viscosity of solvent b. Similar to the viscosity of solvent
 - c. Greater than the viscosity of solvent d. None of the above
- 4. A positive value of reaction constant in Hemmett equation shows that the reaction is accelerated by:
 - a. Electron withdrawing substituent
 - c. Temperature only

b. Electron donating substituent

d. None of these

- 5. MEC is a:
 - a. Pharmacokinetic parameter.
 - b. Pharmacodynamic parameter.
 - c. Both pharmacokinetic and pharmacodynamic parameter.
 - d. None of these.
- 6. Relative bio-availability of 1 implies:
 - a. Complete absorption of drug.
 - b. 50% absorption of drug.
 - c. Bio-availability from both dosage form is same but does not indicate complete absorption.
 - d. None of these.
- 7. The ratio of rate constant $k_{\rm H}/k_{\rm D}$ is:
 - **a.** Less than k_H/k_T **b.** More than k_H/k_T d. Equal to 1
 - c. Equal to k_H/k_T
- 8. Two most important sites for drug elimination are:
 - a. Pulmonary and liver

b. Kidney and liver

c. Kidney and pulmonary

- d. Skin and liver
- 9. The highest point along the reaction coordinate in potential energy surface is known as: a. Activation point **b.** Transition Point c. Saddle point d. None of these

1x20=20

 10. Which of the following is true for activation of exothermic reaction? a. Ea = 48.1 + 0.75Q c. Ea = 48.1 + 0.25Q 	energy of potential energy profile in case of b. Ea = 48.1 - 0.75Q d. Ea = 48.1 + 0.25Q
11. Polarography maxima can be suppressed bya. Picric acidc. Phenol⁺	addition of: b. β-napthol d. Gelatin
12. If m and t are respectively the flow rate and o diffusion current I_d is proportional to: a. $m^{2/3}t^{1/6}$ c. $m^{2/3}t^{1/6}$	drop time of Hg of the DME, the limiting b. m ^{1/6t2/3} d. m ^{1/6t^{1/6}}
13. The potential at the point on the polarograph half of the diffusion current is:a. Half wave currentc. Half-wave potential	nic wave where the current is equal to one- b. Full wave current d. Full wave potential
 14. Hanging mercury drop electrode is a workir a. Cyclic voltammetry c. DC polarography 	ng electrode in: b. Cathodic stripping voltammetry d. Both b & c
15. The low detection limit obtained in strippinga. Faster measurements, which increase fluxb. Preconcentration of the analyte at the harc. Lower double layer charging currents thatd. The chemical interactions between the rest	g analysis are a result of: c of the analyte to the electrode surface. nging Hg drop electrode. nn in pulse methods or cyclic voltammetry. duced analyte ion on the Hg drop.
 16. Which statement is true about polarography' a. The diffusion current is caused by solution b. The addition of supporting electrolytes is c. The diffusion current is proportional to the electroactive species. d. The magnitude of the diffusion current is electroactive generics. 	? on stirring. s necessary for a migration current. he square root of the concentration of the s proportional to concentration of

17. Which of the following is not an example of fuel cell?

a. Hydrogen-oxygen cell	b. Methyl-oxygen-alcohol cell
c. Propane-oxygen cell	d. Hexanone-oxygen cell

18. Advantage of fuel cell over petrol is its only product:

a. Oxygen	b. Nitrogen	
c. Water	d. All of these	

19. Which one is not a reference electrode?

c. Square wave

a. Ag-AgCl	b.	Hg-Calomel
c. Dropping Hg	d.	Hydrogen

20. The excitation waveform used in a cyclic voltammetry: a. Linear scan **b.** Different

· · · · ·	b. Differential pulse
	d. Triangular

ime : 2 hrs. 40 min.	larks: 50
[Answer question no.1 & any four (4) from the rest]	
 i. Explain in brief the principle of anodic stripping voltammetry. A solution believed to contain trace amounts of Ca²⁺ and Cd²⁺ is analyzed using ASV. Sketch a representative plot of current versus voltage. ii. How can you determine Linear Free Energy Relationship (LFER) from Hammett equation? 	5+5=10
What is Activated Complex Theory? Derive an expression for Eyring equation using this theory. How can you determine the standard entropy value for first order gaseous molecule?	2+5+3=10
 i. What do you mean by Taft equation? How does it differ from Hammett equation? ii. What is isokinetic temperature? Determine isokinetic temperature from isokinetic relationship. 	5+5=10
 i. Draw a set-up of a dropping mercury electrode and different components in a polarographic experiment. Indicate the advantages of dropping mercury electrode. ii. Draw a typical current vs applied voltage polarogram and indicate the various components. 	5+5=10
 i. Stretch plasma-drug concentration-time profile diagram. Explain different pharmacokinetic and pharmacodynamic parameters involved in it. ii. What are the factors affecting protein-drug binding. 	6+4=10
. Using appropriate diagram discuss the role of potential energy surface for $H + H_2$ reaction. Calculate activation energy for any potential energy surface.	5+5=10
 i. Explain the basic principle involved in cyclic voltammetry. How do we obtain diffusion coefficient from a cyclic voltammogram? ii. Explain the excitation signals used in voltammetry. 	5+5=10
	2+6+2=10

2