Standard method	31	27	26	35	23	31	33	
New method	26	22	23	30	24	28	30	25

Determine whether the precision of the new method differs significantly from that of the standard method. The critical value of F for 7 degrees of freedom is 2.13.

- 7. a) Briefly discuss the classification of analytical methods.
 - b) Write a note on the categories of laboratory hazards.
 - c) What are the sources of error in decomposition and dissolution?
- 8. a) Write briefly the instrumentation of Differential Thermal Analysis.b) Write a short note on the principle of Scanning Electron Microscopy.c) Discuss the applications of Atomic Absorption Spectroscopy.

= = *** = =

REV-00 MSC/51/58

3+3+4=10

3+4+3=10

	ANA	M.Sc. CHE FIRST SEN LYTICAL MSC	MISTRY MESTER CHEMISTRY -101			
Ouration : 3 hrs.	(Use separate a	nswer scripts f	or Objective & Descriptive	Full Marks : 70		
(<u>PART-A</u> ime : 20 min.			<u>Dbjective</u>)	Marks:20		
hoose the corre	ct answer fro	om the follo	wing:	1x20=20		
• Ostwald dilution a.Strong electro c.Non-electroly	n law is applica olyte yte	able to: b. d.	Weak electrolyte Strong and weak electro	olyte		
. In which of the f a.K=10 ² c.K=10 ⁻²	ollowing case	the reaction g b. d.	go farthest to completior K=10 K=1	1?		
What will be the gaseous moles o a.Proceeds in f	effect of press f reactant and orward directi	ure for a read product are s on b. d.	tion in the state of equil ame? Proceeds in backward c No effect	ibrium, if number of lirection		
 The value of ∆G a.1 c.Negative 	for a reaction	in the state of b. d.	f equilibrium is: Positive Zero			
• The unit of rate a.molL ⁻¹ sec ⁻¹ c.molL ⁻¹	constant for a :	zero order rea b. d.	action is: sec ⁻¹ mol ⁻¹ Lsec ⁻¹	-		
Due to common a.Strong electro c.Ionic compo	ion effect, the olyte 1nd	dissociation o b. d.	ofis suppr Weak electrolyte Covalent compound	essed.		
The equivalent i a.98	nass of H ₂ SO ₄ ? b. 48	c. 49	d. 97			
The unit of molality is: a.Molkg ⁻¹ c.MolL ⁻¹			b.Molkg d.None of these			
• 2mol CaCO ₃ = a.200g	b. 100g	c. 300g	d. 250g			
0. 0.5 molNaCl= a.6.02x10 ²³ c.6.02x10 ²⁵		b. d.	3.01x10 ²³ None of these			
I. The mean of a d coefficient of va a.60.4%	istribution is 1 riation? b. 48.3%	4 and the star	ndard deviation is 5. Wh	hat is the value of the		

a.Precision	ay or expressing he	b. Accuracy d. Sonsitivity		
13. The significa	nt figures in the nu b. 3	nber 0.032040 is: c. 5 d. 6		
14 Which of the	following error is (aused by poor calibration of instru	ment?	
a.Random	error	b. Gross error	nent.	
c.Determin	ate error	d. Precision error		
15. In wet ashin	g, the decompositio	process converts the organic same	ole to:	
a.CO2 and	CH ₄	b. CO_2 and N_2		
c.CO2 and	H ₂ O	d. CH ₄ and CO		
16. The error tha	at occurs when the v	veighing curve shifts by a constant a	amount is called:	
a.Sensitivit	y error	b. Zero error		
c.Random	error	d. Linearity error		
17. The measure	of the systematic or	leterminate error of an analytical met	hod is provided by:	
a.Precision		b. Bias		
c.Sensitivit	У	d. Selectivity		
c.Control t d.None of t	he diameter of the e he above.	ectron beam being passed.		
10 In flome she	tomoton the comen	ion of all atoms in a showing lowhat		
a.Atomizat	ion	b. Vaporization	ance is caned.	
c.Excitation	n	d. Emission		
20. The two emi	ssion systems. FAE	and ICP-AES, differ in the way atc	omic species are:	
		b. Emitted		
a.Created		d Created and excited		
a.Created c.Created a	ind emitted	u. Cleated and excited		
a.Created c.Created a	and emitted	==***==		
a.Created c.Created a	and emitted	==***==		
a.Created c.Created a	ind emitted	==***==		
a.Created c.Created a	nd emitted	==***==		
a.Created c.Created a	and emitted	==***==		
a.Created c.Created a	and emitted	==***==		
a.Created c.Created a	nd emitted	==***==		
a.Created c.Created a	and emitted	==***==		
a.Created c.Created a	and emitted	==***==		

	(<u>PART-B : Descriptive</u>)		
ſi.	me : 2 hrs. 40 min.	Marks: 50	
	[Answer question no.1 & any four (4) from the rest]		
	 a) The equilibrium constant for a reaction is 18.5 at 925 K and 9.25 at 1000 K. Calculate the enthalpy of reaction. b) When 20g CaCO₃ dissolved in 90mL water calculate the mole fraction for both the component. c) Distinguish between systematic and random errors. Give an example of each type of error. d) Write briefly about the applications of thermogravimetry. 	3+2+2+3=10	
<u>></u>	 a) Derive the integrated rate expression for second order reaction, when two different reactants are involved. b) A first order reaction is 40% complete in 50 minutes. Calculate the value of the rate constant? In what time will the reaction be 80% complete? 	6+4=10 e	
3.	 a) What is common ion effect? b) Derive the relationship between equilibrium constant Kp and K_c. c) What will be the equilibrium constant K_c for the following reaction at 400 K? 2 NOCl (g) 2 NO (g) + Cl₂ (g) Given, ΔH= 77.2 KJ/mol, ΔS= 122 JK⁻¹mol⁻¹ at 400 K. 	2+4+4=10	
۱.	 a) What is diverse ion effect? b) State Ostwald dilution law. c) A weak monobasic acid is found to be 4% ionized at 0.1 M concentration Calculate the value of the ionization constant? d) At 500 °C, the equilibrium constant for the reaction is 6.02x10⁻² lit²mol⁻². What will be the value of K_p at the same temperature? N₂ (g) + 3 H₂(g) 2 NH₃(g) 	2+2+3+3=10 1.	
5.	 a) Calculate the mass percent of element present in C₆H₁₂O₆. b) Define molarity, molality, and equivalent mass of salt. c) Find the charge of 27g of Al³⁺ ions in coulombs. d) What weight of AgCl will be precipitated when a solution containing 4.77g NaCl is added to a solution of 5.77 g of AgNO₃? 	2+3+2+3=10	
5.	a) Explain the terms: Precision, Standard deviation, Confidence limit and	6	
	b) Two set of results, in mg/litre, one set obtained by a standard method and the other set by a new method are given below:	4	